
Lecture 3, Jan 23, 2024
Storage and Variables
Code Memory and Instructions

• Slower and larger than registers, but usually faster than data memory
• Usually not modifiable when the program is running
• This can be a region of a larger set of memory (unified memory model) or physically separate (separate

memory model)
– We need to be aware of this because it may have performance implications

• Code is compiled/assembled into instructions, which are stored here
• Each instruction is an atomic operation that may take multiple clock cycles to complete (measured in

cycles-per-instruction, CPI)
– Particularly in CISC architectures, CPI for some instructions can be much greater than 1
– Typical goal of RISC architectures is to limit CPI to 1 for most instructions
– CPI can also be less than 1 (e.g. multiple cores, superscalar architecture, etc)

• Actual execution time is the sum of the CPIs of all instructions multiplied by the clock period
• Pipelining helps achieve CPI of exactly 1 by overlapping instructions to avoid having idle hardware

– If two instructions have multiple sub-parts that use different internal areas, we can start the second
instruction while the first one is still executing

– e.g. fetch the second instruction while the first is executing
– This is akin to an assembly line

• Such features are mostly to the programmer, but not the hardware designer
– These affect our ability to relate real execution time to CPI, since it adds unpredictability to

execution time
– Other features can include caching, branch prediction, out-of-order execution, etc

Registers
• The program counter (PC) keeps track of either the current instruction executing or the next instruction

to be fetched
– The CPU would fetch the instruction at the position, interpret it, and execute it, which modifies

the program counter
– This is a special function register (SFR), which are registers that have specific uses and must be

accessed in specific ways
• All microcontrollers provide general purpose registers or accumulators

– They are very limited in number, but very fast
• The register size typically matches the microcontroller word size, but occasionally divided into half-words

or bytes
– If we’re working with a lot of math that exceeds the bit width of the microcontroller, this can be

very slow
– Most execution time is spent moving data between registers and slower memory

• Some instructions may concatenate multiple registers to form a larger operand
• Some older microcontrollers (e.g. 8051) implement registers in RAM, which allows for register banking

(having multiple sets of registers that can be switched)
– This is mostly obsolete in newer chips due to speed

• Accumulators are general purpose registers that are often dedicated to arithmetic
– These are inherently used by math instructions
– To use them as e.g. an address, they often have to be copied to another register first
– This simplifies the instruction set since math instructions will only use the accumulators
– Mostly a feature in modern RISC chips; CISC designs directly use general purpose registers

1



Memory Layout

• Most memory in CPUs will be byte-addressable, even if the bit width of the microcontroller is more
than 8

• Since a word can span multiple memory addresses, we need a convention on how to store a word in
multiple bytes

– Big endian systems store the most significant bytes first
– Little endian systems store the least significant bytes first

* Note the individual bits are not reordered, only the byte order is
– This is normally handled by the compiler, but may become important when we do type casting or

accessing a specific bit in a mask

Figure 1: Big vs. little endian system.

Stack Pointer

• The stack is a special region of memory inherently accessed through special instructions
– This has a variety of uses such as subroutines and temporary variable storage

• The stack and program memory may share the same address space or physical memory, or may be
entirely separate

• The stack pointer (SP) is another SFR that tracks where the top of the stack is in memory
• What exactly the stack pointer points to varies between implementations

– Some platforms (e.g. 8051) have the SP point to the next free space, while some others (e.g. HC12)
point towards the last filled space

– Some stacks grow downwards (SP decreases, e.g. 68HC12), while others grow upwards in memory
• Since the stack doesn’t know where the data came from and how big it was, if we push a 16-bit value

onto the stack and pop it into an 8-bit register, we would only get the first 8 bits while the rest stays
on the stack

• Note that in most architectures, popping the stack only copies the value to a register and moves the
stack pointer, without ever clearing the value in the stack

• Growing the stack past the designed limit causes a stack overflow, which could overwrite data or even
code

• Many stack implementations are very limited, and some platforms may even have a fixed upper limit to
the call depth

Code Compilation
• Each instruction is compiled into an op-code, which is decoded by the microcontroller
• Every variant of the instruction has its own distinct encoding

– e.g. the MOV instruction can have many different op-codes depending on where it’s reading from
and writing to

2



• Instruction encoding is usually handled by the assembler/compiler and not too much of a concern

3


	Lecture 3, Jan 23, 2024
	Storage and Variables
	Code Memory and Instructions

	Registers
	Memory Layout
	Stack Pointer

	Code Compilation


