
Lecture 2, Jan 16, 2024
Number Representation

• Ultimately everything is represented in binary; but a number in binary is meaningless without an
attached interpretation!

• Representing a number in binary requires us to know the signedness, bit width, and target representation
– Integers can be represented in a variety of ways including sign and magnitude (using one bit for

the sign and remaining for magnitude), 1’s complement, and 2’s complement
* 2’s complement has the advantage of not having two representations for zero and allowing for

subtraction with normal addition logic
• To convert to binary, successively divide by 2 and take the remainder each time as the bit value, from

right to left
• For non-integers, we use either a fixed-point or floating-point representation

– In a fixed-point representation, a fixed number of bits is allocated to represent the integer part
and another fixed number of bits for the fractional part

* To get the fractional part, we successively multiply by 2 and take any integer part as the bit
value, from left to right

* Example: 27.2
• Using 8-bit unsigned for the integer part gives 0001 1011
• Fractional part:

– 0.1 × 2 = 0 + 0.2
– 0.2 × 2 = 0 + 0.4
– 0.4 × 2 = 0 + 0.8
– 0.8 × 2 = 1 + 0.6
– 0.6 × 2 = 1 + 0.2
– · · ·

• The fractional bits would repeat forever as 0.0001100011. . .
– In a floating-point representation the position of the decimal point is not fixed

* The bits are split into a sign bit, a signed exponent, and an unsigned mantissa
* The number is recovered by multiplying the mantissa by a base raised to the power of the

exponent, times the sign
* Compared to fixed point, this can store a much wider range of numbers
* However doing math on them requires them to be denormalized first, essentially converting

this back to fixed point
• This is slow, can lose precision, and can lead to bugs when the magnitudes of the floats

differ by too much
• Note since the binary representation is a repeating decimal, if we truncate it at any finite digit count

and convert back to decimal, we won’t get the original number back
– Often by converting a decimal number to binary, we lose precision; when we do arithmetic

operations on these numbers the precision loss is compounded
– Both fixed and floating point are lossy

• The result of an arithmetic operation may not fit in the number representation of the operands
– A carry-in can be used to implement addition at bit widths higher than a single instruction allows
– A carry-out indicates that the result doesn’t fit within the bit width allocated
– If the carry-out is unhandled, it becomes an arithmetic overflow

* A 1 in the carry-out position indicates an overflow
* If a carry-out has occurred, it is usually put into a special register

– An arithmetic underflow can also happen when we subtract a larger number from a smaller one
when we’re working only with unsigned numbers

* This doesn’t happen with 2’s complement since everything gets converted to addition, so it
uses overflow for both numbers that are too small or too big

• Bits can be shifted or rotated
– An arithmetic shift left shifts the MSB into the carry and 0 into the LSB

1



– An arithmetic shift right shifts duplicates the MSB and shifts the LSB into the carry
• Two’s complement representation is a common way to represent negative numbers

– The MSB acts as a sign bit; a 1 in MSB indicates a negative number
– The remaining bits are used to store the magnitude
– If the number is negative, the magnitude is complemented (inverted) and has 1 added to it
– This allows us to unify the addition and subtraction logic
– Underflow or overflow is indicated by the carry-out being different from the carry-on into the MSB

(sign bit) of the result
• When we move a signed value into storage that has more bits, we perform sign extension, i.e. duplicating

the MSB to fill any unfilled bits
– e.g. 0b11100000 becomes 0b11111111′11100000 upon sign extension to 16 bits

• For multiplication/division, most modern RISC systems will do this in a number of steps:
1. Check the signs of the operands
2. Take 2’s complement of any negative operands
3. Multiply/divide as unsigned
4. If operands had different signs, take 2’s complement of the result

• Number representations affect our choice of microcontroller – if we need to work with a lot of large
numbers or floating-point numbers, we need to choose processors that have the corresponding features,
otherwise performance will be very poor

• Data can be stored in multiple different locations:
– Data memory (often but not always RAM)
– Instruction memory (often non-volatile, non-runtime-modifiable memory)
– Registers
– Memory inherent to instruction

• Going down this list, the amount of memory available gets smaller but the memory is faster

Important

Key takeaways:
1. We need to be aware of our data representation limits
2. Any calculations using data from non-controlled sources must be assertion-checked to avoid

errors
3. Use assertions to be more aware of potential overflow causes in intermediate math
4. Use completley specified typing for variables; do not assume anything about variable sizes, etc
5. Avoid non-deterministic stop conditions (i.e. have fallbacks), especially when external data is

involved

2


	Lecture 2, Jan 16, 2024
	Number Representation


