
Lecture 13, Apr 9, 2024
State Machines

• The state machine is a model of the dynamic behaviour of a system, represented by:
– States: physical or logical states of the program, e.g. different ranges of variable values, program

flow locations, etc that hold a certain meaning
– Transitions: pre-define paths between states, triggered by specific actions or conditions

• State machines are an abstract but functionally equivalent representation of an underlying program or
hardware

– They can be used as a design pattern
– Can be used as a diagnostic tool for existing code, e.g. automatic state minimization/optimization,

consistency checking, etc
• A finite state machine (FSM) is a state machine with a finite set of states and allowable transitions

between states, possibly with input required for each transition
– FSMs can have nondeterminism, where the same input can lead to multiple different transition
– We usually assume that our systems are fully deterministic (deterministic finite automata, DFAs)

• Each state also has a payload or output, i.e. the action taken by the program when that state is reached
• We can specify a state machine by the following:

– List of states
– List of outputs for each state (sharing indices with the state list)
– List of transitions, as tuples of (source state, destination state)
– List of inputs for each transition (sharing indices with the transitions list)

• Dead ends in the state machine are states that have no transitions out
– These can be problematic

• Implementation of states and transitions can be explicit, but can also be implicitly defined using
program flow itself

– Explicit encoding derives directly from the mathematical representation; easy to modify, difficult
to debug manually, has transition search overhead, hard to optimize by compiler

– Implicit encoding is much more readable by a human; difficult to modify, easy to debug by a
program, and has faster transitions

• State machine minimization is the process of removing redundant states
– States are redundant if they have the same output and transition to the same set of states given

the same input
– We can search for redundant states, merge them, and then check states again and repeat
– Given a state machine, we might want to rename/encode the states and write it in a mathematical

representation, which makes the redundant states more obvious
* Eliminate one of the redundant states and change all references to the eliminated state
* Go through the list of transitions and eliminate duplicate transitions resulting from the change

– To further simplify the state machine we may introduce variables
* These variables are essentially state machines of their own
* We control the transitions in this new state machine via the transitions of the original state

machine; when we take transitions, we may choose to modify the variable, i.e. cause a transition
in the variable’s state machine

– We can keep moving more of the payload onto transitions; eventually we reach a system with
only a single state, with every action being a transition (input conditioned on a large number of
variables)

* This has diminishing returns
– Since state machines are easy for code to understand, many automated systems exist for state

machine minimization
* These systems are capable of optimizing as much as we want, so we need to specify the correct

level of optimization
• Note that state machine minimization does not necessarily get us faster code; the smaller state diagram

can lead to faster execution, or less complexity and code size, etc

1


	Lecture 13, Apr 9, 2024
	State Machines


