
Lecture 11, Mar 26, 2024
Software I2C Implementation Example

• We want to write a software I2C implementation to interface a 24C02 EEPROM chip and write a single
byte

• The payload consists of:
– Address byte: first 4 bits are 0b1010, next 3 bits are the I2C device address, final bit is R/W flag

* Depending on the chip size, the 3 bits are divided differently into address bits and page number
bits

– Word address: 8-bit memory address of the byte to write to
– Data: 8-bit data byte to write

Figure 1: Payload format for a single byte write for the 24C02.

Figure 2: Device address format for the 24C02.

• Assume SDA is connected to P0.0 (alias _SDA), SCL is connected to P0.1 (alias _SCL), CPU with no
hardware I2C support

• We’re asked to:
– Write a flexible, extensible software I2C implementation (i.e. a library) to send a single byte to a

specified I2C address (low-speed mode)
– Use the code to write 0x51 to the 2K version of the EEPROM memory at address 0xA2 at I2C

device address 0x04 on the bus
• Generally we split up the code into several layers:

– Application layer : high-level user code that calls functions within the library or protocol layer;
does not directly interface with hardware

– Library/protocol layer : defines common operations that are part of the core protocol specification,
e.g. start/stop/send for I2C and read/write for the EEPROM; calls the hardware/physical layer

– Hardware/physical layer : code that interfaces with the exact hardware used, e.g. setting pin modes,
specific timing, using SFRs

#define _SDA P0.0
#define _SCL P0.1

/***** Physical Layer *****/

void initPhysical(void) {
// [Hardware setup, including pin mode configuration, pin speed, etc]

1

}

inline void setSDA(void) {
// [Possibly (re-)set SDA as output]
// [Wait for setup time]
_SDA = 1;
// [Wait for hold time]

}

// Omitted but similar to above
inline void clearSDA(void);
inline void setSCL(void);
inline void clearSCL(void);

/***** Protocol Layer *****/

void i2cInit(void) {
initPhysical();
// Set idle state of I2C pins
// We do this here instead of initPhysical() since this is specified by I2C
_SCL = 1;
_SDA = 1;

}

void i2cStart(void) {
// Pre-condition: SDA and SCL both high
ASSERT(_SDA && _SCL);
clearSDA();

}

void i2cSend(uint8_t data) {
// Pre-condition: SDA low, SCL high
ASSERT(!_SDA && _SCL);
for (uint8_t i = 0; i < 8; i ++) {

// Bring SCL low, so SDA can change
clearSCL();
// Send data
if (data & 0x80)

setSDA();
else

clearSDA();
data <<= 1;
// Bring SCL high again to get ready for the next bit
setSCL();

}
// Ack: bring SCL low, set SDA to input, read ack, bring SCL high again
clearSCL();
// Should be added to physical layer
releaseSDA();
// Should be added to physical layer
if (!readSDA())

// Should be added to one of the layer depending on functionality
// This depends on the hardware, the application, etc
handleError();

2

// Reset the pin and bus states so that we can send again
// Should be added to physical layer
driveSDA();
clearSDA();
setSCL();

}

void i2cStop(void) {
// Pre-condition: SDA low, SCL high
ASSERT(!_SDA && _SCL);
setSDA();

}

/***** Application Layer *****/

void main(void) {
i2cInit();
i2cStart();
// Address: 0b1010 to start, address of 0b100, write mode (0)
i2cSend(0b10101000);
// Word address
i2cSend(0xA2);
// Data
i2cSend(0x51);
i2cStop();

}

3

	Lecture 11, Mar 26, 2024
	Software I2C Implementation Example

