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• Dependencies between random variables can be represented in a Bayesian network as a DAG
– DAGs are general enough to represent all possible factorizations of the joint probability

• Example: Let X ∼ Ber(α) and Y ∼ Ber(β); let Z = X ∨ Y and X ⊥⊥ Y
– P (Z = 0) = (1 − α)(1 − β)
– Note that, given Z, X and Y are no longer independent
– P (X = 1|Z = 1) = P (X = 1,Z = 1)

P (Z = 1) = α

1 − (1 − α)(1 − β)

– P (Y = 0|Z = 1) = P (Y = 0,Z = 1)
P (Z = 1) = α(1 − β)

1 − (1 − α)(1 − β)

– P (X = 1,Y = 0|Z = 1) = P (X = 1,Y = 0,Z = 1)
P (Z = 1) = α(1 − β)

1 − (1 − α)(1 − β) ̸= P (X = 1|Z =

1)P (Y = 0|Z = 1)
– We have P (X = 1|Y = 1,Z = 1) < P (X = 1|Z = 1) in this case, which is known as explaining

away – being given more information makes the event less likely
• For Markov random fields, we have an undirected graph instead, which is allowed to have cycles

– This is typically used in situations were there is no direct causal relationship, e.g. particles in a
lattice

– The conditional probability of a node is dependent only on its immediate neighbours
• The joint distribution factors as p(x) = 1
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– Each individual ψ is a potential function
– In the case of a Bayesian network, the potential functions are conditional probabilities; however in

general for a Markov random field they need not be
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