

Tutorial 7, Mar 8, 2024

Linear Regression

- Given data samples $(x_1, y_1), \dots, (x_n, y_n)$, we want to find a linear model with parameters a, b such that $ax + b$ best fits the data
- Use the squared error, so $(a^*, b^*) = \underset{(a,b)}{\operatorname{argmin}} \sum_{i=1}^n (y_i - (ax_i + b))^2$
- Let $\mathbf{Y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$, $\mathbf{H} = \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}$, $\mathbf{Z} = \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix}$ then $\mathbf{Y} = \mathbf{Hv} + \mathbf{Z}$
- The optimization becomes $\mathbf{v}^* = \underset{\mathbf{v}}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{Hv}\|^2$
 - The closed-form solution is $\mathbf{v}^* = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{Y}$
- If we assume that the noise \mathbf{Z} is Gaussian with zero mean, then the least-squares solution is equivalent to the ML estimate of \mathbf{Y} given \mathbf{X}
- What if \mathbf{Z} is exponentially distributed according to ce^{-z} ?
 - Now all the Z_i are positive – this means that instead of having the line of best fit passing through the data, it should now be completely below the data, since all the noise is positive
 - Optimize with the condition $y_i - (ax_i + b) \geq 0$ for all i
 - $\mathbf{v}^* = \underset{\mathbf{v}}{\operatorname{argmax}} \prod_{i=1}^n f_z(y_i - (ax_i + b)) = \underset{\mathbf{v}}{\operatorname{argmax}} \exp \left(- \sum_{i=1}^N (y_i - (ax_i + b)) \right)$
 - NLL: $\underset{\mathbf{v}}{\operatorname{argmax}} \sum_{i=1}^N (y_i - (ax_i + b))$
 - This has no closed-form solution, but it is a linear program that can be solved quickly using numerical methods