
Tutorial 5, Feb 16, 2024
Vector Random Variables and Joint Gaussians

• Let X = (X1, . . . , Xn)T ∈ Rn represented by a column vector
• The expectation is µ = E[X] = (E[X1], . . . , E[Xn])T

• The covariance matrix is Σ = E[(X − µ)(X − µ)T ]
– uT Σu = uT E[(X − µ)(X − µ)T ]u = E[uT (X − µ)(X − µ)T u] = E[(uT (X − µ))2] > 0
– Therefore Σ is symmetric positive definite

• Consider a linear transformation Y = AX
– µY = AµX

– ΣY = AΣXAT

• X is jointly Gaussian if fX(x) = 1
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• For any linear transformation A, if X is jointly Gaussian then AX is also jointly Gaussian

– This is because the sum of Gaussians is also Gaussian
• If X ∼ N (µX , ΣX) and ΣX = QDQT , then Z = QT X would have a diagonal covariance matrix

ΣZ = D, i.e. it will consist of all independent Gaussians
– Using this we can find a transformation of the original variables that makes them independent

1


	Tutorial 5, Feb 16, 2024
	Vector Random Variables and Joint Gaussians


