

Tutorial 5, Feb 16, 2024

Vector Random Variables and Joint Gaussians

- Let $\mathbf{X} = (X_1, \dots, X_n)^T \in \mathbb{R}^n$ represented by a column vector
- The expectation is $\boldsymbol{\mu} = E[\mathbf{X}] = (E[X_1], \dots, E[X_n])^T$
- The covariance matrix is $\boldsymbol{\Sigma} = E[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T]$
 - $\mathbf{u}^T \boldsymbol{\Sigma} \mathbf{u} = \mathbf{u}^T E[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T] \mathbf{u} = E[\mathbf{u}^T (\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T \mathbf{u}] = E[(\mathbf{u}^T (\mathbf{X} - \boldsymbol{\mu}))^2] > 0$
 - Therefore $\boldsymbol{\Sigma}$ is symmetric positive definite
- Consider a linear transformation $\mathbf{Y} = \mathbf{A}\mathbf{X}$
 - $\boldsymbol{\mu}_{\mathbf{Y}} = \mathbf{A}\boldsymbol{\mu}_{\mathbf{X}}$
 - $\boldsymbol{\Sigma}_{\mathbf{Y}} = \mathbf{A}\boldsymbol{\Sigma}_{\mathbf{X}}\mathbf{A}^T$
- \mathbf{X} is jointly Gaussian if $f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{n}{2}} \det(\boldsymbol{\Sigma}_{\mathbf{X}})^{\frac{1}{2}}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{X}})^T \boldsymbol{\Sigma}_{\mathbf{X}}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{X}}) \right]$
- For any linear transformation \mathbf{A} , if \mathbf{X} is jointly Gaussian then $\mathbf{A}\mathbf{X}$ is also jointly Gaussian
 - This is because the sum of Gaussians is also Gaussian
- If $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathbf{X}}, \boldsymbol{\Sigma}_{\mathbf{X}})$ and $\boldsymbol{\Sigma}_{\mathbf{X}} = \mathbf{Q}\mathbf{D}\mathbf{Q}^T$, then $\mathbf{Z} = \mathbf{Q}^T \mathbf{X}$ would have a diagonal covariance matrix $\boldsymbol{\Sigma}_{\mathbf{Z}} = \mathbf{D}$, i.e. it will consist of all independent Gaussians
 - Using this we can find a transformation of the original variables that makes them independent