
Tutorial 4, Feb 9, 2024
Hypothesis Testing

Definition

Hypothesis Testing: Let X be an RV with distribution fX(x; H0) or fX(x; H1), and we observe x; we
would like to infer whether H0 or H1 is true by designing a decision rule g(x).

• Generally we partition S into regions A0, A1, so g(x) =
{

H0 x ∈ A0

H1 x ∈ A1
• A good decision rule minimizes both the probability of type I errors α (false rejection of H0/false

acceptance of H1) and type II errors β (false acceptance of H0/false rejection of H1)
– α = P [X /∈ A0; H0] =

ˆ
Ac

0

f(x; H0) dx

– β = P [X ∈ A0; H1] =
ˆ

A0

f(x; H1) dx

Definition

Neyman-Pearson Lemma: For a given target α, the minimum β is achieved by a decision rule of the
form

f(x; H0)
f(x; H1)

H0
≷
H1

ζ

• Setting ζ to 1 gives MLE, but in general we can set this to anything
• If we have priors π0 = P [H0], π1 = P [H1] then π0f(x; H0)

π1f(x; H1)
H0
≷
H1

ζ

• Example: Let X be the number of coin tosses until the first heads
– H0: fair coin with P [H] = 1

2
– H1: biased coin with P [H] = 1

8
– The number of tosses until first heads is given by a geometric distribution
– With ML:

* p(x; H0) =
(

1
2

)x

* p(x; H1) =
(

1 − 1
8

)x−1 (
1
8

)
* Test:

(
1
2

)x H0
≷
H1

(
1 − 1

8

)x−1 (
1
8

)
* Log both sides: −x

H0
≷
H1

(x − 1) log
(

1 − 1
8

)
+ log

(
1
8

)
* x

H1
≷
H0

3 + log(7/8)
1 + log(7/8) ≈ 3.5

* Type I error: α = P [X ≥ 4; H0] =
∞∑

x=4

(
1
2

)x

= 1
8

* Type I error: β = P [X ≤ 3; H1] =
3∑

x=1

(
1 − 1

8

)x−1 (
1
8

)
• Example: f(x; H0) is uniform on [0, 1]; f(x; H1) is uniform on [−a, a]

– With ML:
* If a <

1
2 then select H1 if x ∈ [−a, a] and H0 otherwise
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• This is because with a <
1
2 the likelihood of H1 is always greater, as long as x falls within

the interval
* If a ≥ 1

2 then select H0 if x ∈ [0, 1] and H1 otherwise

• Again with a ≥ 1
2 the likelihood of H1 is always less, as long as x falls within the interval

of H0
* Note this assumes we never see an x outside these distributions
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