
Tutorial 3, Feb 2, 2024
Bayesian Estimation
Maximum a Posteriori (MAP) Estimation

• Consider random variables Θ, X1, . . . , Xn where X1, . . . , Xn are conditionally independent given Θ

– Our likelihood function is then f(x1, . . . , xn|θ) =
n∏

i=1
f(xi|θ)

• Let the prior distribution for Θ be f(θ)

• θ̂MAP = argmax
θ

f(θ|x1, . . . , xn) = argmax
θ

f(θ)f(x1, . . . , xn|θ)
f(x1, . . . , xn) = argmax

θ
f(θ)

n∏
i=1

f(xi|θ)

– Just like MLE we can take the log to turn this into a sum
• Example: Let W1, . . . , Wn be independent RVs each Wi ∼ N (0, σ2

i ) and let Xi = Θ + Wi; find the
MAP and LMS estimates of Θ given a prior Θ ∼ N (µ, σ2)

– Given Θ = θ, Xi ∼ N (θ, σ2
i )

– θ̂MAP = argmax
θ

[
log f(θ) +

n∑
i=1

log(f(xi|θ))
]

= argmin
θ

[
(θ − µ)2

2σ
+

n∑
i=1

(xi − θ)2

2σ2
i

]

=
µ

σ2 +
∑n

i=1
xi

σ2
i

1
σ2 +

∑n
i=1

1
σ2

– Note if we did MLE instead we would not have the σ2 and µ terms in the expression
* Using the prior for MAP is like having an additional measurement

– As n → ∞ this converges to the MLE estimate

Least Mean Square (LMS) Estimation

• Let the estimate for Θ be g(X1, . . . , Xn), then we seek to minimize the expectation of the squared error
of this estimate from the true parameter

– g∗ = argmin
g

E[(g(X1, . . . , Xn) − Θ)2]

• We can show that this is equal to the conditional expectation g∗(X) = E[Θ|X1 = x1, . . . , Xn = xn]
• θ̂LMS = E[Θ|X1 = x1, . . . , Xn = xn] =

ˆ
θf(θ|x1, . . . , xn) dθ

– f(θ|x1, . . . , xn) can be found using Bayes’ rule
• The LMS estimator is always unbiased
• Note that for a Gaussian prior with Gaussian likelihood, the posterior f(θ|x1, . . . , xn) will also be

Gaussian, which means its max and its mean are at the same location
– This means that the LMS (which is the expectation/mean) and the MAP (which is the max/mode)

estimators are the same
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