

Tutorial 3, Feb 2, 2024

Bayesian Estimation

Maximum a Posteriori (MAP) Estimation

- Consider random variables Θ, X_1, \dots, X_n where X_1, \dots, X_n are conditionally independent given Θ
 - Our likelihood function is then $f(x_1, \dots, x_n | \theta) = \prod_{i=1}^n f(x_i | \theta)$
- Let the prior distribution for Θ be $f(\theta)$
- $\hat{\theta}_{\text{MAP}} = \underset{\theta}{\operatorname{argmax}} f(\theta | x_1, \dots, x_n) = \underset{\theta}{\operatorname{argmax}} \frac{f(\theta) f(x_1, \dots, x_n | \theta)}{f(x_1, \dots, x_n)} = \underset{\theta}{\operatorname{argmax}} f(\theta) \prod_{i=1}^n f(x_i | \theta)$
 - Just like MLE we can take the log to turn this into a sum
- Example: Let W_1, \dots, W_n be independent RVs each $W_i \sim \mathcal{N}(0, \sigma_i^2)$ and let $X_i = \Theta + W_i$; find the MAP and LMS estimates of Θ given a prior $\Theta \sim \mathcal{N}(\mu, \sigma^2)$
 - Given $\Theta = \theta$, $X_i \sim \mathcal{N}(\theta, \sigma_i^2)$
 - $$\begin{aligned} \hat{\theta}_{\text{MAP}} &= \underset{\theta}{\operatorname{argmax}} \left[\log f(\theta) + \sum_{i=1}^n \log(f(x_i | \theta)) \right] \\ &= \underset{\theta}{\operatorname{argmin}} \left[\frac{(\theta - \mu)^2}{2\sigma^2} + \sum_{i=1}^n \frac{(x_i - \theta)^2}{2\sigma_i^2} \right] \\ &= \frac{\frac{\mu}{\sigma^2} + \sum_{i=1}^n \frac{x_i}{\sigma_i^2}}{\frac{1}{\sigma^2} + \sum_{i=1}^n \frac{1}{\sigma_i^2}} \end{aligned}$$
 - Note if we did MLE instead we would not have the σ^2 and μ terms in the expression
 - * Using the prior for MAP is like having an additional measurement
 - As $n \rightarrow \infty$ this converges to the MLE estimate

Least Mean Square (LMS) Estimation

- Let the estimate for Θ be $g(X_1, \dots, X_n)$, then we seek to minimize the expectation of the squared error of this estimate from the true parameter
 - $$g^* = \underset{g}{\operatorname{argmin}} E[(g(X_1, \dots, X_n) - \Theta)^2]$$
- We can show that this is equal to the conditional expectation $g^*(\mathbf{X}) = E[\Theta | X_1 = x_1, \dots, X_n = x_n]$
- $\hat{\theta}_{\text{LMS}} = E[\Theta | X_1 = x_1, \dots, X_n = x_n] = \int \theta f(\theta | x_1, \dots, x_n) d\theta$
 - $f(\theta | x_1, \dots, x_n)$ can be found using Bayes' rule
- The LMS estimator is always unbiased
- Note that for a Gaussian prior with Gaussian likelihood, the posterior $f(\theta | x_1, \dots, x_n)$ will also be Gaussian, which means its max and its mean are at the same location
 - This means that the LMS (which is the expectation/mean) and the MAP (which is the max mode) estimators are the same