Tutorial 3, Feb 2, 2024

Bayesian Estimation

Maximum a Posteriori (MAP) Estimation
e Consider random variables O, X1, ..., X,, where X1,..., X, are conditionally independent given ©
n

— Our likelihood function is then f(z1,...,z,]0) = H f(z;0)
i=1
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o Oyap = argmax f(0)z1, ..., x,) = argmax
0 0

— Just like MLE we can take the log to turn this into a sum

., W,, be independent RVs each W; ~ N (0,02) and let X; = © + W;; find the

i=1

o Let the prior distribution for © be f(6)
- Tp)

o Example: Let Wy,
MAP and LMS estimates of © given a prior © ~ N (u, 0?)
~ Given © =0, X; ~ N (0,0?)
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— Note if we did MLE instead we would not have the 0% and p terms in the expression

* Using the prior for MAP is like having an additional measurement

— As n — oo this converges to the MLE estimate
, Xn), then we seek to minimize the expectation of the squared error

Least Mean Square (LMS) Estimation
o Let the estimate for © be g(Xq,...
of this estimate from the true parameter
~ ¢* = argmin E[(9(X1,...,Xn) — 0)?]
g
We can show that this is equal to the conditional expectation g*(X) = E[O|X; = x1,..., X, = 2]
S xp)do

0f (61, ..

brms = B[O Xy =241,..., Xy, = 2]
— f(0]z1,...,z,) can be found using Bayes’ rule
The LMS estimator is always unbiased
Note that for a Gaussian prior with Gaussian likelihood, the posterior f(6|x1,...,z,) will also be
Gaussian, which means its max and its mean are at the same location
— This means that the LMS (which is the expectation/mean) and the MAP (which is the max/mode)

estimators are the same
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