

Tutorial 2, Jan 26, 2024

Convergence and Weak Law

- *Markov inequality:* Let $X > 0$, then $P[X \geq a] \leq \frac{E[X]}{a}$
 - Let $Z(w) = \begin{cases} a & X(w) \geq a \\ 0 & \text{elsewhere} \end{cases}$
 - Observe that $Z \leq X$, so $E[Z] \leq E[X]$
 - Also, since Z is zero everywhere except where $X \geq a$ where it has a constant value a , we can easily find its expectation
 - $E[Z] = aP[X \geq a] \leq E[X] \implies P(X \geq a) \leq \frac{E[X]}{a}$
- *Chebyshev inequality:* $P[|X - m_X| \geq \epsilon] \leq \frac{\sigma^2}{\epsilon^2}$
 - This can be proven from the Markov inequality and does not require $X > 0$
 - Apply Markov to $(X - m_X)^2$
 - $P[(X - m_X)^2 \geq \epsilon^2] \leq \frac{E[(X - m_X)^2]}{\epsilon^2}$
 - The numerator is the definition of variance and we can square root both sides in the probability
 - This gives exactly $P[|X - m_X| \geq \epsilon] \leq \frac{\sigma^2}{\epsilon^2}$

Definition

Convergence: Let X, X_1, X_2, \dots be a sequence of RVs; X_n converges to X ($X_n \rightarrow X$) in probability if

$$\forall \epsilon > 0, \lim_{n \rightarrow \infty} P[|X_n - X| \geq \epsilon] = 0$$

- X is the “target”, which can be constant but need not be

Definition

Weak Law of Large Numbers: Let X_1, \dots, X_n be a sequence of IID RVs and let $E[X_i] = m_X$, $\text{Var}(X_i) = \sigma^2$ both be finite, and

$$M_n = \frac{1}{n} \sum_{i=1}^n X_i$$

then M_n converges to m_X in probability as $n \rightarrow \infty$.

- Proof:
 - Notice $E[M_n] = \frac{1}{n}m_X$ and $\text{Var}(M_n) = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$ due to IID implying covariance is zero
 - By Chebyshev, $P[|M_n - E[M_n]| \geq \epsilon] = P[|M_n - E[X_i]| \geq \epsilon] \leq \frac{\text{Var}(M_n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$
 - Therefore for any fixed ϵ we have that as $n \rightarrow \infty$ this probability goes to zero
 - We can construct a stronger proof that shows this holds even for infinite variance

Parameter Estimation

- Suppose we have IID observations x_1, \dots, x_n coming from a model $f(\mathbf{x}; \theta)$; we wish to estimate θ
- The frequentist approach assumes that the parameter θ is a constant, while the Bayesian approach assumes that θ comes from a distribution
 - MLE is a frequentist approach while MAP, MLS are Bayesian approaches
- $\hat{\theta}_{\text{MLE}} = \underset{\theta}{\operatorname{argmax}} \prod_{i=1}^n f(x_i; \theta) = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^n \log(f(x_i; \theta))$

- Example: X_1, \dots, X_n are IID Gaussians with unit variance and unknown mean m_X : $X_i \sim \mathcal{N}(m_X, 1)$; estimate the mean using MLE
 - Multiplying the distributions adds the terms in the exponent
 - Maximizing the likelihood is equivalent to maximizing $\sum_{i=1}^n -\frac{1}{2}(x_i - m_X)^2$
 - Taking the derivative and setting to zero we obtain $m_X = \frac{1}{n} \sum_{i=1}^n x_i$
- Example: $f(x; \theta) = \begin{cases} \frac{1}{\theta} x^{\frac{1}{\theta}-1} & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$
 - $\hat{\theta}_{\text{MLE}} = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^n \log \left(\frac{1}{\theta} x_i^{\frac{1}{\theta}-1} \right)$
 - $= \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^n \left(-\log \theta + \left(\frac{1}{\theta} - 1 \right) \log x_i \right)$
 - $= \underset{\theta}{\operatorname{argmin}} n \log \theta + \left(1 - \frac{1}{\theta} \right) \sum_{i=1}^n \log(x_i)$
 - Differentiate: $\frac{n}{\theta} + \frac{1}{\theta^2} \sum_{i=1}^n \log x_i = 0 \implies \theta = -\frac{1}{n} \sum_{i=1}^n \log x_i$