
Lecture 9, Feb 5, 2024
Joint Gaussian Distributions

Theorem

Central Limit Theorem: Let X1, . . . , Xn be a sequence of i.i.d. RVs from any distribution with finite
mean µ and variance σ2, and let Sn = X1 + · · · + Xn be their sum; and let

Zn = Sn − nµ

σ
√

n

which is zero-mean and unit variance, then

lim
n→∞

P [Zn ≤ z] = 1√
2π

� z

−∞
e− x2

2 dx

i.e. the distribution of Zn approaches N (0, 1).

Definition

X and Y are jointly Gaussian if their joint PDF is given by
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where µ1, µ2 are the means, σ2
1 , σ2

2 are the variances, and ρX,Y is the correlation coefficient of X, Y .

• Notice that the expression is symmetric in X and Y , and both variables appear in their normalized
form

• If X and Y are uncorrelated, then fX,Y (x, y) = 1
2πσ1σ2
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= fX(x)fY (y)
– For Gaussian RVs, uncorrelated implies independent

• If we compute marginals by completing the square, we see that both are Gaussian

Figure 1: Plot of a joint Gaussian distribution with zero-mean, unit variance and uncorrelated X, Y .

• For the case of zero-mean, unit variance and uncorrelated X, Y above the contours of constant probability
are circles centered about the origin
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– Changing the mean shifts the centre of the distribution
– The exponent is in quadratic form
– If the variances are not equal (but still uncorrelated), we will get axis-aligned ellipses as the

distribution in each dimension gets stretched out
– If the correlation is nonzero, the axes of the ellipse will no longer be axis-aligned

* For a positive ρ the ellipse is along the x = y axis
* For a negative ρ the ellipse is along the x = −y axis
* The closer ρ is to 1, the more tightly packed the ellipse is along its axis

– We can always find a transformation that aligns the axes of the ellipse with the x and y axis to
make them independent in the new transformed space

• The conditional PDF is fX,Y (x|y) = 1√
2πσ2
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e
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– This is another Gaussian with µ = ρX,Y
σ1

σ2
(y − µ2) + µ1 and σ2 = (1 − ρ2

X,Y )σ2
1

– Notice the new mean is the normalized y, scaled up by the standard deviation of x, multiplied by
the correlation and then add back to mean of x to shift it

– The variance has no dependence on y but knowing y reduces the variance of x
– As ρX,Y → ±1, the conditional variance approaches 0 because X is just a linear function of Y

• Consider a linear transformation
[

V
W

]
=

[
a b
c e

] [
X
Y

]
= AX where the determinant is nonzero

(invertible)

– The joint PDF of V and W is given by fV ,W (v, w) = fX,Y (x, y)
det A

– Intuitively an area dx by dy is mapped to an area of size dP ; this ratio is the determinant
* f(x, y) dx dy = f(v, w) dP since both are the probability of a small region

– For a nonlinear transformation the determinant is replaced by a Jacobian
– Note practically to get this in terms of v, w we need to find the inverse mapping from v, w to x, y

• More generally consider Z = AZ where A ∈ Rn×n and is invertible

– The joint PDF is fZ(Z) = f(z1, . . . , zn) = f(x1, . . . , xn)
det A

= fX(A−1z)
det A

Generalization of Expectation and Variance

• Let the mean vector of X =

X1
...

Xn

 be mX = E[X] =

E[X1]
...

E[Xn]



• Let the correlation matrix be RX =


E[X2

1 ] E[X1X2] . . . E[X1Xn]
E[X2X1] E[X2

2 ] . . . E[X2Xn]
...

... . . . ...
E[XnX1] E[XnX2] . . . E[X2

n]


– Note that this is symmetric
– The diagonal elements are second moments

• Let the covariance matrix be KX such that entry (i, j) is σXi,Xj

– This is symmetric positive semidefinite
– The diagonal entries are the variances of each variable
– If the means are all zero, this is equivalent to the correlation matrix
– If all Xi, Xj are uncorrelated, then the covariance matrix is diagonal

• Notice that RX = E[XXT ] and KX = E[(X − mX)(X − mX)T ] = RX − mXmT
X

• For any general linear transformation Y = AX:
– E[Y ] = AE[X] = AmX

– KY = AKXAT

• We can apply an eigendecomposition to the covariance matrix
– Often our covariance matrix will be full rank, which makes it positive definite, and makes the
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decomposition always possible
– Find eigenvectors ei such that KXei = λei and eT

i ej = δij (orthonormal eigenvectors)
– Let P =

[
e1 . . . en

]
and Λ = diag λi, then KX = P ΛP T

– For a general Gaussian, this means that if we first transform the variables by P T , then they will
all be independent of each other
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