Lecture 9, Feb 5, 2024

Joint Gaussian Distributions

Central Limit Theorem: Let Xq,..., X, be a sequence of i.i.d. RVs from any distribution with finite
mean 4 and variance 02, and let S,, = X1 + - - - + X,, be their sum; and let
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which is zero-mean and unit variance, then
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i.e. the distribution of Z,, approaches N (0,1).

X and Y are jointly Gaussian if their joint PDF is given by
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where ju1, 12 are the means, 0,03 are the variances, and p x,vy is the correlation coefficient of X, Y.
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e Notice that the expression is symmetric in X and Y, and both variables appear in their normalized
form

I (CORIE DY
o If X and Y are uncorrelated, then fx y(z,y) = 27m1026 = fx(z)fy(y)

— For Gaussian RVs, uncorrelated implies independent
o If we compute marginals by completing the square, we see that both are Gaussian

Figure 1: Plot of a joint Gaussian distribution with zero-mean, unit variance and uncorrelated X,Y.

e For the case of zero-mean, unit variance and uncorrelated X, Y above the contours of constant probability
are circles centered about the origin



— Changing the mean shifts the centre of the distribution
The exponent is in quadratic form
— If the variances are not equal (but still uncorrelated), we will get axis-aligned ellipses as the
distribution in each dimension gets stretched out
— If the correlation is nonzero, the axes of the ellipse will no longer be axis-aligned
* For a positive p the ellipse is along the x = y axis
* For a negative p the ellipse is along the z = —y axis
* The closer p is to 1, the more tightly packed the ellipse is along its axis
— We can always find a transformation that aligns the axes of the ellipse with the x and y axis to
make them independent in the new transformed space
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o The conditional PDF is fx y (z|y) = e 0%y %( R )
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— This is another Gaussian with p = pX’yﬁ(y — pg) + pp and 0% = (1 — p% y)o?
pu :

— Notice the new mean is the normalized vy, 2scaled up by the standard deviation of x, multiplied by
the correlation and then add back to mean of x to shift it

— The variance has no dependence on y but knowing y reduces the variance of x

— As px y — =1, the conditional variance approaches 0 because X is just a linear function of Y’

e Consider a linear transformation [;ﬂ = {Z le)] [ii} = AX where the determinant is nonzero
(invertible)

— The joint PDF of V and W is given by fy w (v, w) = M

— Intuitively an area dx by dy is mapped to an area of size dP; this ratio is the determinant
* f(z,y)dxdy = f(v,w)dP since both are the probability of a small region
— For a nonlinear transformation the determinant is replaced by a Jacobian
— Note practically to get this in terms of v, w we need to find the inverse mapping from v, w to z,y
o More generally consider Z = AZ where A € R™*™ and is invertible

.. . T1y..., Ty A1z
— The joint PDF is fz(Z) = f(z1,...,2n) = it 1detA ) = fXd(etA )

Generalization of Expectation and Variance

X1 E[X1]
o Let the mean vector of X = | | | be mx = E[X] = _
Xn E[X,]
E[X7] E[X1X5] ... E[X1X,]

E[XoX:]  E[X3] ... E[X2X,)]
o Let the correlation matrizc be Rx = . . . .

E[X,X:] E[X,Xs] ... FE[X?
— Note that this is symmetric
— The diagonal elements are second moments
+ Let the covariance matriz be Kx such that entry (4,7) is ox, x;
— This is symmetric positive semidefinite
— The diagonal entries are the variances of each variable
— If the means are all zero, this is equivalent to the correlation matrix
If all X;, X; are uncorrelated, then the covariance matrix is diagonal
+ Notice that Rx = E[XX”] and Kx = E[(X —mx)(X —mx)'] = Rx — mxmX%
e For any general linear transformation ¥ = AX:
- E[Y]=AE[X] = Amx
- Ky = AKx A"
e We can apply an eigendecomposition to the covariance matrix
— Often our covariance matrix will be full rank, which makes it positive definite, and makes the



decomposition always possible

— Find eigenvectors e; such that Kxe; = Ae; and eZTej = §;; (orthonormal eigenvectors)

~Let P=[e; ... e,]and A =diag);, then Kx = PAP”

— For a general Gaussian, this means that if we first transform the variables by PT, then they will
all be independent of each other
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