Lecture 8, Feb 2, 2024

Bayesian Hypothesis Testing

- We switch to using a MAP approach instead of ML if we have prior knowledge of the hypotheses
- Assume we know a priori that $P[H_0] = \pi_0$ and $P[H_1] = 1 \pi_0 = \pi_1$
- MAP rule: compare $p(H_1|x)$ with $p(H_0|x)$

$$-P(H_j|x) = \frac{p_x(x|H_j)P[H_j]}{p_x(x|H_0)P[H_0] + p_x(x|H_1)P[H_1]}$$

- Example: binary communications

 - If a 0 was sent then $X \sim \mathcal{N}(-1, \sigma^2)$; if a 1 was sent then $X \sim \mathcal{N}(1, \sigma^2)$ Compare $\frac{1}{\sqrt{2\pi\sigma}}e^{-(x-1)^2}2\sigma^2\pi_1$ and $\frac{1}{\sqrt{2\pi\sigma}}e^{-(x+1)^2}2\sigma^2\pi_0$
 - The threshold is $e^{\frac{4x}{2\sigma^2}} \leq \frac{\pi_0}{\pi_1}$ or $x \leq \frac{\sigma^2}{2} \log \frac{\pi_0}{\pi_1}$
 - If we assume that the bits are balanced, i.e. $\pi_0 = \pi_1$, then we're simply seeing if x is positive or negative
- Assign different costs, C_{ij} being the cost of accepting H_i if H_j is true
 - The expected cost is $C_{00}P[\text{Accept }H_0|H_0]\pi_0 + C_{01}P[\text{Reject }H_0|H_0]\pi_0 + C_{10}P[\text{Accept }H_1|H_1]\pi_1 + C_{01}P[\text{Accept }H_1|H_1]\pi_1 + C_{01$ $C_{11}P$ [Reject $H_1|H_1]\pi_1$
 - Define the likelihood $\Lambda(x) = \frac{f_X(x|H_1)}{f_X(x|H_0)}$
 - Optimal decision rule: accept H_0 if $\Lambda(x) < \frac{\pi_0(C_{01} C_{00})}{\pi_1(C_{10} C_{11})}$
 - * We can derive this using the same procedure as above
 - * A special case is to minimize the probability of error in which case $C_{00} = C_{11} = 0, C_{01} =$ $C_{10} = 1$

* Equivalent to minimizing
$$P_E = \int_R f_X(x|H_0)\pi_0 \,\mathrm{d}x + \int_{R^c} f_X(x|H_1)\pi_1 \,\mathrm{d}x$$

der the Gaussian example with minimum error probability as the cost

• Consider the Gaussian example with minimum error probability as the cost

$$-P_E = \int_R \frac{1}{\sqrt{2\pi\sigma}} e_0^{\frac{-(x+1)^2 2\sigma^2}{\pi}} dx + \int_{R^c} \frac{1}{\sqrt{2\pi\sigma}} e_1^{\frac{-(x-1)^2 2\sigma^2}{\pi}} dx = 1 + \int_{R^c} \frac{1}{\sqrt{2\pi\sigma}} \left(e^{-\frac{(x-1)^2}{2\sigma^2}} \pi_1 - e^{-\frac{(x+1)^2}{2\sigma^2}} \pi_0 \right) dx$$

$$- \text{ To minimize this we want to pick the expression inside brackets so it is always negative}$$

- Making the expression negative gives us back the MAP rule!
- For multiple hypotheses:

- Probability of correct is
$$\sum_{k=1}^{K} \int_{R_k} P[X = x, H_k] dx$$

- Min cost: $\sum_{i} \int_{R_i} \sum_{l=1}^{K} L_{kj} P[X = x, H_k] dx$

- * We need a cost L_{kj} between every pair of hypotheses
- * Pick j to minimize the sum inside the integral
- Naive Bayes assumption: all measurements are independent given θ

Significance Testing

- Sometimes we know what H_0 is but we don't have a clear alternative hypothesis
- We want to bound α , the probability of type I error
- Example: testing if a unit variance Gaussian is zero mean

- Let
$$S = \frac{1}{\sqrt{n}}(X_1, \dots, X_n)$$

- Then if H_0 holds then $S \sim \mathcal{N}(0, 1)$
- Suppose our decision rule is to accept H_0 if $S \in [-\gamma, \gamma]$

$$-\alpha = \int_{-\infty}^{\gamma} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx + \int_{\gamma}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 2Q(\gamma)$$

- If we want to restrict the type I error probability to 5%, then $Q(\gamma) = 0.05 \implies \gamma = 1.96$