Lecture 7, Jan 29, 2024

Estimators for Multinomial RVs

- The multinomial distribution is a generalization of the binomial distribution
 - In binomial we had 2 outcomes 0 and 1, so $N_0 + N_1 = n$; in multinomial we have k outcomes, $N_1,\ldots,N_K=n$
 - The probability of outcome k is θ_k and $\sum_{k=1}^{K} \theta_k = 1$
 - e.g. tossing a die
- The indicator function for multinomial is a k-tuple X, with a 1 in the position that the outcome occurred and 0s everywhere else
 - e.g. X = (0, 0, 1, 0, ..., 0) indicates outcome is 3
- The probability of X is then $P[X = (b_1, \dots, b_K)] = \prod_{k=1}^{K} \theta_k^{b_k}$ where b_k is the number of occurrences of k
- Again consider *n* independent trials X_1, \ldots, X_n and let $\boldsymbol{\theta} = (\theta_1, \ldots, \theta_K)$

•
$$P[\mathbf{X}_1 = \mathbf{b}_1, \mathbf{X}_2 = \mathbf{b}_2, \dots, \mathbf{X}_n = \mathbf{b}_n; \boldsymbol{\theta}] = \prod_{j=1}^n P[\mathbf{X}_j = \mathbf{b}_j]$$

 $= \prod_{j=1}^n \theta_1^{b_{j_1}} \dots \theta_K^{b_{j_K}}$
 $= \theta_1^{\sum_{j=1}^{n_j} b_{j_1}} \dots \theta_K^{\sum_{j=1}^{n_j} b_{j_K}}$
 $= \theta_1^{N_1} \dots \theta_K^{N_K}$

– Where $N_k = \sum b_{j_k}$ is the number of times outcome k occurred in n trials

- The vector $\mathbf{N} = (N_1, \dots, N_K)$ is a sufficient statistic for our estimators

ĸ

- Note $E[\mathbf{N}; \boldsymbol{\theta}] = (E[N_1], \dots, E[N_K]) = (n\theta_1, n\theta_2, \dots, n\theta_K)$
 - The expected value of the N vector is simply the number of trials times the probability of each trial
- Consider the MLE estimator:

$$-\log P[\boldsymbol{N};\boldsymbol{\theta}] = \log(\theta_1^{N_1}\dots\theta_K^{N_K}) = \sum_{k=1}^{K} N_k \log \theta_k$$

- Now we need to optimize this sum with respect to θ , with the constraint that all θ_k are positive the sum of all θ_k is 1

- Lagrangian:
$$\sum_{k=1}^{K} N_k \log \theta_k + \lambda \left(\sum_{k=1}^{K} \theta_k - 1 \right)$$

* For a particular term θ_k , the derivative is $\frac{N_j}{N_j}$ +

- * For a particular term θ_j , the derivative is $\frac{N_j}{\theta_k} + \lambda = 0 \implies \frac{N_j}{\theta_j} = -\lambda$ * Substituting this into the constraint for θ we get $\lambda = -n$

Therefore
$$\hat{\theta}_{j_{\text{ML}}} = -\frac{N_j}{\lambda} = \frac{N_j}{n}$$

- * This is expected, since it's the relative frequency of k
- This is for a particular sequence of outcomes; if we only cared about number of occurrences, we have to add the multinomial coefficient

$$-\binom{n}{n_1, n_2, \dots, n_K} = \frac{n!}{n_1! n_2! \dots n_K!}$$
 where $n_1 + \dots + n_K = n$
- For $K = 2$, this reduces to the binomial coefficient.

- For the MAP estimate we use the Dirichlet prior, which is a generalization of the beta distribution
 - The Dirichlet distribution is $f_{\Theta}(\boldsymbol{\theta}) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1) \dots \Gamma(\alpha_K)} \theta_1^{\alpha_1 1} \dots \theta_K^{\alpha_K 1}$ where $\alpha_j > 0, \sum_j \alpha_j = \alpha_0$
 - * This is the conjugate prior for the multinomial distribution since it has the same form

 $(\dots, n_K) = \frac{p(n_1, \dots, n_K | \boldsymbol{\theta}) f(\boldsymbol{\theta})}{p(n_1, \dots, n_K | \boldsymbol{\theta})}$ - The posterior is $f(\boldsymbol{\Theta}|n_1,$

$$p(n_1, \dots, n_K) = c\theta_1^{n_1 + \alpha_1 - 1} \dots \theta_K^{n_K + \alpha_K - 1}$$
$$= \frac{\Gamma(\alpha_0 + n)}{\Gamma(\alpha_1 + n) \dots \Gamma(\alpha_K + n_K)} \frac{\prod_{k=1}^K \theta_k^{n_k + \alpha_k - 1}}{P(n_1, \dots, n_K)}$$
$$n_i + \alpha_i - 1$$

- We again form the Lagrangian and take derivatives to obtain: $\frac{n_j + \alpha_j - 1}{\theta_i} = -\lambda, -\theta_j = -\lambda$

$$\frac{n_j + \alpha_j - 1}{\lambda}$$

- Therefore $\hat{\theta}_{j_{\text{MAP}}} = \frac{n_j + \alpha_j - 1}{n + \alpha_0 - K}$

* The -K in the denominator gets rid of all the extra 1s in the α s when summed up

* We can interpret this as a relative frequency, where prior to doing the experiment we did $\alpha_0 - K$ experiments and outcome j occurred $\alpha_j - 1$ times

• Consider the LMS estimator:

$$- E[\Theta|N] = \int \dots \int (\theta_1, \dots, \theta_K) c \theta_1^{n_1 + \alpha_1 - 1} \dots \theta_K^{n_K + \alpha_K - 1} d\theta_1 \dots d\theta_k$$
$$= (E[\Theta_1|n_1 + \alpha_1 - 1], \dots, E[\Theta_K|n_K + \alpha_K - 1]$$
$$= \left(\frac{n_1 + \alpha_1}{n + \alpha_0}, \dots, \frac{n_K + \alpha_K}{n + \alpha_0}\right)$$
* Note $E[\Theta_j|n_j + \alpha_j - 1] = c \int_0^1 \theta_j \theta_j^{n_j + \alpha_j - 1} d\theta_j = \frac{n_j + \alpha_j}{n + \alpha_0}$
$$- \text{Therefore } \hat{\theta}_{j_{\text{LMS}}} = \frac{n_j + \alpha_j}{n + \alpha_0}$$

• Again notice that as $n \to \infty$, all 3 of these estimators converge to the ML estimator

Binary Hypothesis Testing

- Hypothesis testing is like a more constrained version of parameter estimation; instead of estimating the value of θ , we are testing whether θ_0 or θ_1 is more likely
- Given two hypotheses H_0 (the null hypothesis, or the "default" to be proved or disproved) and H_1 (the alternative hypothesis), we want to know which one is more likely
- We would like to find $g: S_{\mathbf{X}} \mapsto \{H_0, H_1\}$ mapping from observations to hypotheses based on $P[\mathbf{X} \in$ $A; H_j$
 - q divides the sample space into 2 parts, the acceptance region R^c where H_0 is accepted and rejection region R where H_0 is rejected
- If g is not perfect, then 2 types of error can occur:
 - Type I error: H_0 is rejected when it is true
 - * Also known as the *significance level* of a test
 - * $\alpha(R) = P[\boldsymbol{X} \in R; H_0]$
 - * We typically pick this to be 10%, 5%, 1%, etc
 - Type II error: H_0 is accepted when H_1 is true (i.e. H_0 is false)
 - * $\beta(R) = P[\mathbf{X} \in R^c; H_1]$
- We can do this partitioning using our 3 estimators
 - Using MLE, we simply pick the H that gives us the maximum likelihood
 - We just need to test $p_{\mathbf{X}}(\mathbf{x}|H_0)$ and $p_{\mathbf{X}}(\mathbf{x}|H_1)$
 - The likelihood ratio is $L(\boldsymbol{x}) = \frac{p_{\boldsymbol{X}}(\boldsymbol{x}|H_1)}{p_{\boldsymbol{X}}(\boldsymbol{x}|H_0)}$ (alternative divided by null)
 - With the maximum likelihood rule we reject H_0 when $L(\boldsymbol{x}) > 1$
 - This can be generalized to rejecting when $L(\mathbf{x}) > \xi$ where ξ is the *critical value*
 - * Use this when we know one hypothesis is more likely (i.e. a prior)
 - * As we increase ξ , α decreases while β increases
- Example: $H_0: X \sim \mathcal{N}(0, 1), H_1: X \sim \mathcal{N}(1, 1)$
 - The hypothesis changes the mean of the Gaussian

$$- L(x) = \frac{f_X(x; H_1)}{f_X(x; H_2)} = \frac{e^{-(x-1)^2/2}}{e^{-x^2/2}} = e^{-\frac{1}{2}(-2x+1)}$$

$$- \text{ In this case the threshold rule is } x \leq \gamma = \ln \xi + \frac{1}{2}$$

$$- \text{ Type I error: } \alpha(\gamma) = \int_{\gamma}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x'^2/2} \, \mathrm{d}x' = Q(\gamma)$$

$$* \text{ This decreases with } \gamma$$

$$- \text{ Type II error: } \beta(\gamma) = \int_{-\infty}^{\gamma} = \frac{1}{\sqrt{2\pi}} e^{-(x'-1)^2/2} \, \mathrm{d}x' = Q(1-\gamma)$$

$$* \text{ This increases with } \gamma$$

$$- \text{ Note } Q(x) = 1 - \Phi(x) \text{ where } \Phi(x) \text{ is the standard normal CD}$$

• So far we've only divided the region into 2, where one side is accept and the other is reject; we could also do a more complex division where we have pockets of accept in the rejection region, etc; is this better?

CDF

Theorem

Neyman Pearson Lemma: Given the likelihood ratio test $L(X), \xi$ such that

 $P[L(x) > \xi; H_0] = \alpha$ and $P[L(X) \le \xi; H_1] = \beta$

then for any other test (region R) with $P[X \in R; H_0] \leq \alpha$ it must be that $P[X \notin R; H_1] \geq \beta$ and

$$P[X \in R; H_0] < \alpha \implies P[X \notin R; H_1] > \beta$$

That is, the LRT achieves the best possible tradeoff between α and β .

- The Neyman Pearson lemma states that given any value of α , the likelihood ratio test gives the smallest possible β to achieve that α
 - This is a constrained minimization problem of minimizing β subject to a certain α
 - * Lagrangian: $\int_{A} f_X(x; H_1) \, \mathrm{d}x + \lambda \left(\int_{R} f_X(x; H_0) \, \mathrm{d}x \alpha \right) = \lambda(1-\alpha) + \int_{A} \left(f_X(x; H_1) \lambda f_X(x; H_0) \right) \, \mathrm{d}x$
 - * To minimize this we include x in A if $\frac{f_X(x; H_1)}{f_X(x; H_0)} < \lambda$ to make the term in the integral always negative, which is the LRT