Lecture 7, Jan 29, 2024

Estimators for Multinomial RVs

e The multinomial distribution is a generalization of the binomial distribution
— In binomial we had 2 outcomes 0 and 1, so Ng + N7y = n; in multinomial we have k outcomes,
Nl, ey NK =N
K
— The probability of outcome k is 6 and Z 0, =1
k=i
— e.g. tossing a die
e The indicator function for multinomial is a k-tuple X, with a 1 in the position that the outcome
occurred and Os everywhere else
- e.g. X =(0,0,1,0,...,0) indicates outcome is 3
K
o The probability of X is then P[X = (b1,...,bk)] = H 92’“ where by, is the number of occurrences of k
k=1
e Again consider n independent trials X7,..., X, and let 8 = (04,...,0k)
n
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— Where N, = z bj, is the number of times outcome k occurred in n trials

J
— The vector N = (Ny,...,Nk) is a sufficient statistic for our estimators
o Note E[N;0] = (E[N1],...,E[Nk]) = (nb1,nbs, ..., nlk)
— The expected value of the N vector is simply the number of trials times the probability of each
trial

¢ Consider the MLE estimator: X«

~ log P[N;6] = log(6;" ... 03) =)~ Ny log b

k=1
— Now we need to optimize this sum with respect to @, with the constraint that all 6, are positive

the sum of all 0 is 1

K K
— Lagrangian: Z Nilog 60 + A (Z 0, — 1)
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* For a particular term 6, the derivative is 9—] +A=0 = 9—3 =-A
k J
* Substituting this into the constraint for § we get A = —n
A N; N;
— Therefore 0;,,, = ——L = —2
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* This is expected, since it’s the relative frequency of k
e This is for a particular sequence of outcomes; if we only cared about number of occurrences, we have to

add the multinomial coefficient
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— For K = 2, this reduces to the binomial coefficient
e For the MAP estimate we use the Dirichlet prior, which is a generalization of the beta distribution

r
— The Dirichlet distribution is fe(6) = F(al).(.a.olz(om)eill_l . 055! where a; > 0, Z a; = o
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* This is the conjugate prior for the multinomial distribution since it has the same form



p(n, ..., nk|6)f(6)

— The posterior is f(®|ny,...,nk) =
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— We again form the Lagrangian and take derivatives to obtain: % = -\ -0, =
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— Therefore 0;,,,, = %
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* The —K in the denominator gets rid of all the extra 1s in the as when summed up
* We can interpret this as a relative frequency, where prior to doing the experiment we did
oo — K experiments and outcome j occurred ao; — 1 times
o Consider the LMS estimator:
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o Again notice that as n — oo, all 3 of these estimators converge to the ML estimator

— Therefore 6 =
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Binary Hypothesis Testing

e Hypothesis testing is like a more constrained version of parameter estimation; instead of estimating the
value of 8, we are testing whether 6y or 6; is more likely
o Given two hypotheses Hy (the null hypothesis, or the “default” to be proved or disproved) and H; (the
alternative hypothesis), we want to know which one is more likely
o We would like to find g: Sx — { Hy, H; } mapping from observations to hypotheses based on P[X €
A; Hj
— g divides the sample space into 2 parts, the acceptance region R® where Hy is accepted and
rejection region R where Hj is rejected
o If g is not perfect, then 2 types of error can occur:
— Type I error: Hy is rejected when it is true
* Also known as the significance level of a test
* a(R) = P[X € R; Hy|
* We typically pick this to be 10%, 5%, 1%, etc
— Type II error: Hy is accepted when H; is true (i.e. Hy is false)
* B(R) = P[X € R H,]
e We can do this partitioning using our 3 estimators
e Using MLE, we simply pick the H that gives us the maximum likelihood
— We just need to test px (x|Hp) and px (x|Hy)
 The likeli . _ px(z|Hy) o
e likelihood ratio is L(x) = —————= (alternative divided by null)
px (z[Ho)
— With the maximum likelihood rule we reject Hy when L(x) > 1
— This can be generalized to rejecting when L(x) > £ where ¢ is the critical value
* Use this when we know one hypothesis is more likely (i.e. a prior)
* As we increase £, a decreases while 3 increases
e Example: Hp: X ~N(0,1),H; : X ~N(1,1)
— The hypothesis changes the mean of the Gaussian
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In this case the threshold rule is s <y =1Iné + -
Type I () / Tl 2
- e I error: a(y) =
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* This decreases with ~
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* This increases with ~
— Note Q(x) =1 — ®(z) where ®(x) is the standard normal CDF
e So far we’ve only divided the region into 2, where one side is accept and the other is reject; we could

also do a more complex division where we have pockets of accept in the rejection region, etc; is this
better?

Neyman Pearson Lemma: Given the likelihood ratio test L(X), & such that
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P[L(x) > & Hol=a and P[L(X)<¢&H =8
then for any other test (region R) with P[X € R; Hy| < « it must be that P[X ¢ R; H;] > 8 and
PIXe€R;Hyl<a = P[X¢R,H]>p

That is, the LRT achieves the best possible tradeoff between a and £.
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e The Neyman Pearson lemma states that given any value of «, the likelihood ratio test gives the smallest
possible 8 to achieve that o
— This is a constrained minimization problem of minimizing § subject to a certain «

* Lagrangian: /Afx(x;Hl)dx—i—)\ (/R fx(x; Hy) da — a) = A(l—a)—l—/A (fx(z; Hy) — MNfx(z; Hp)) dz
Sx (5 Hy)

* To minimize this we include z in A if =——2—<
fx(x; Ho)

negative, which is the LRT

< A to make the term in the integral always
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