
Lecture 7, Jan 29, 2024
Estimators for Multinomial RVs

• The multinomial distribution is a generalization of the binomial distribution
– In binomial we had 2 outcomes 0 and 1, so N0 + N1 = n; in multinomial we have k outcomes,

N1, . . . , NK = n

– The probability of outcome k is θk and
K∑

k=i

θk = 1

– e.g. tossing a die
• The indicator function for multinomial is a k-tuple X, with a 1 in the position that the outcome

occurred and 0s everywhere else
– e.g. X = (0, 0, 1, 0, . . . , 0) indicates outcome is 3

• The probability of X is then P [X = (b1, . . . , bK)] =
K∏

k=1
θbk

k where bk is the number of occurrences of k

• Again consider n independent trials X1, . . . , Xn and let θ = (θ1, . . . , θK)

• P [X1 = b1, X2 = b2, . . . , Xn = bn; θ] =
n∏

j=1
P [Xj = bj ]

=
n∏

j=1
θ

bj1
1 . . . θ

bjK

K

= θ

∑
bj1

1 . . . θ

∑
bjK

K

= θN1
1 . . . θNK

K

– Where Nk =
∑

j

bjk
is the number of times outcome k occurred in n trials

– The vector N = (N1, . . . , NK) is a sufficient statistic for our estimators
• Note E[N ; θ] = (E[N1], . . . , E[NK ]) = (nθ1, nθ2, . . . , nθK)

– The expected value of the N vector is simply the number of trials times the probability of each
trial

• Consider the MLE estimator:

– log P [N ; θ] = log(θN1
1 . . . θNK

K ) =
K∑

k=1
Nk log θk

– Now we need to optimize this sum with respect to θ, with the constraint that all θk are positive
the sum of all θk is 1

– Lagrangian:
K∑

k=1
Nk log θk + λ

(
K∑

k=1
θk − 1

)
* For a particular term θj , the derivative is Nj

θk
+ λ = 0 =⇒ Nj

θj
= −λ

* Substituting this into the constraint for θ we get λ = −n

– Therefore θ̂jML = −Nj

λ
= Nj

n
* This is expected, since it’s the relative frequency of k

• This is for a particular sequence of outcomes; if we only cared about number of occurrences, we have to
add the multinomial coefficient

–
(

n

n1, n2, . . . , nK

)
= n!

n1!n2! . . . nK ! where n1 + · · · + nK = n

– For K = 2, this reduces to the binomial coefficient
• For the MAP estimate we use the Dirichlet prior, which is a generalization of the beta distribution

– The Dirichlet distribution is fΘ(θ) = Γ(α0)
Γ(α1) . . . Γ(αK)θα1−1

1 . . . θαK−1
K where αj > 0,

∑
j

αj = α0

* This is the conjugate prior for the multinomial distribution since it has the same form
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– The posterior is f(Θ|n1, . . . , nK) = p(n1, . . . , nK |θ)f(θ)
p(n1, . . . , nK)

= cθn1+α1−1
1 . . . θnK+αK −1

K

= Γ(α0 + n)
Γ(α1 + n) . . . Γ(αK + nK)

∏K
k=1 θnk+αk−1

k

P (n1, . . . , nK)
– We again form the Lagrangian and take derivatives to obtain: nj + αj − 1

θj
= −λ, −θj =

nj + αj − 1
λ

– Therefore θ̂jMAP = nj + αj − 1
n + α0 − K

* The −K in the denominator gets rid of all the extra 1s in the αs when summed up
* We can interpret this as a relative frequency, where prior to doing the experiment we did

α0 − K experiments and outcome j occurred αj − 1 times
• Consider the LMS estimator:

– E[Θ|N ] =
�

. . .

�
(θ1, . . . , θK)cθn1+α1−1

1 . . . θnK+αK −1
K dθ1 . . . dθk

= (E[Θ1|n1 + α1 − 1], . . . , E[ΘK |nK + αK − 1]

=
(

n1 + α1

n + α0
, . . . , nK + αK

n + α0

)
* Note E[Θj |nj + αj − 1] = c

� 1

0
θjθ

nj+αj−1
j dθj = nj + αj

n + α0

– Therefore θ̂jLMS = nj + αj

n + α0
• Again notice that as n → ∞, all 3 of these estimators converge to the ML estimator

Binary Hypothesis Testing
• Hypothesis testing is like a more constrained version of parameter estimation; instead of estimating the

value of θ, we are testing whether θ0 or θ1 is more likely
• Given two hypotheses H0 (the null hypothesis, or the “default” to be proved or disproved) and H1 (the

alternative hypothesis), we want to know which one is more likely
• We would like to find g : SX 7→ { H0, H1 } mapping from observations to hypotheses based on P [X ∈

A; Hj ]
– g divides the sample space into 2 parts, the acceptance region Rc where H0 is accepted and

rejection region R where H0 is rejected
• If g is not perfect, then 2 types of error can occur:

– Type I error : H0 is rejected when it is true
* Also known as the significance level of a test
* α(R) = P [X ∈ R; H0]
* We typically pick this to be 10%, 5%, 1%, etc

– Type II error : H0 is accepted when H1 is true (i.e. H0 is false)
* β(R) = P [X ∈ Rc; H1]

• We can do this partitioning using our 3 estimators
• Using MLE, we simply pick the H that gives us the maximum likelihood

– We just need to test pX(x|H0) and pX(x|H1)

– The likelihood ratio is L(x) = pX(x|H1)
pX(x|H0) (alternative divided by null)

– With the maximum likelihood rule we reject H0 when L(x) > 1
– This can be generalized to rejecting when L(x) > ξ where ξ is the critical value

* Use this when we know one hypothesis is more likely (i.e. a prior)
* As we increase ξ, α decreases while β increases

• Example: H0 : X ∼ N (0, 1), H1 : X ∼ N (1, 1)
– The hypothesis changes the mean of the Gaussian
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– L(x) = fX(x; H1)
fX(x; H2) = e−(x−1)2/2

e−x2/2 = e− 1
2 (−2x+1)

– In this case the threshold rule is x≶ γ = ln ξ + 1
2

– Type I error: α(γ) =
� ∞

γ

1√
2π

e−x′2/2 dx′ = Q(γ)

* This decreases with γ

– Type II error: β(γ) =
� γ

−∞
= 1√

2π
e−(x′−1)2/2 dx′ = Q(1 − γ)

* This increases with γ
– Note Q(x) = 1 − Φ(x) where Φ(x) is the standard normal CDF

• So far we’ve only divided the region into 2, where one side is accept and the other is reject; we could
also do a more complex division where we have pockets of accept in the rejection region, etc; is this
better?

Theorem

Neyman Pearson Lemma: Given the likelihood ratio test L(X), ξ such that

P [L(x) > ξ; H0] = α and P [L(X) ≤ ξ; H1] = β

then for any other test (region R) with P [X ∈ R; H0] ≤ α it must be that P [X /∈ R; H1] ≥ β and

P [X ∈ R; H0] < α =⇒ P [X /∈ R; H1] > β

That is, the LRT achieves the best possible tradeoff between α and β.

• The Neyman Pearson lemma states that given any value of α, the likelihood ratio test gives the smallest
possible β to achieve that α

– This is a constrained minimization problem of minimizing β subject to a certain α

* Lagrangian:
�

A

fX(x; H1) dx+λ

(�
R

fX(x; H0) dx − α

)
= λ(1−α)+

�
A

(fX(x; H1) − λfX(x; H0)) dx

* To minimize this we include x in A if fX(x; H1)
fX(x; H0) < λ to make the term in the integral always

negative, which is the LRT
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