
Lecture 6, Jan 26, 2024
Estimators for Gaussian RVs

• Consider n IID measurements X1, . . . , Xn ∼ N (µ, σ2) = N (µ, v)
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• Consider the exponent:
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– Ŝ2
n = 1

n

n∑
i=1

(Xi − Mn)2 is an estimator for the sample variance
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– Differentiate wrt µ: n
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– E[M2
n] = Var[Mn] + E[Mn]2 = 1

n
v + µ2

– This is a biased estimator for the variance!

– For any finite value of n instead we use S′
n

2 = 1
n − 1

n∑
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(Xi − Mn)2 which is unbiased

– This applies not just to Gaussians
• Assume the variance is known and the mean has a Gaussian prior; we want to find the MAP estimate

– Let Xi = Θ + Wi where Wi is IID noise
– Assume E[Wi] = E[Wi|Θ] = 0 and Var[Wi] = Var[Xi|Θ = θ] = σ2

w, i.e. noise is independent of θ
and zero-mean, known and fixed variance

– The prior is fΘ(θ) = c1e− (θ−x0)2
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– The likelihood is fX|Θ(x|θ) = c2
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* Knowing θ just gives us the mean of the distribution
* Note the variance that appears here is different than in the prior!

– The posterior distribution: ∝ fX|Θ(x|θ)fΘ(θ) = c3 exp
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– Completing the square: nσ2 + σ2
w

2σ2σ2
w

(
θ − σ2σ2

w

nσ2 + σ2
w

(
nMn

σ2
w

+ µ

σ2

))2

1



* This shows that θ is also a Gaussian with mean σ2σ2
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and variance
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– Since this is a Gaussian we know the maximum occurs at the expectation value

– The MAP estimate is then E[Θ|X] = nσ2
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* As n → ∞ the first weight approaches 1, the second approaches zero
* This means as we take more samples, the MAP estimate approaches the ML estimate, as the

information from the measurements becomes more important than the prior

– Var[Θ|X] = σ2σ2
w
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* Notice that this goes to zero as n → ∞
• In this case, Θ̂LMS = Θ̂MAP = E[Θ|X]
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