
Lecture 5, Jan 22, 2024
Maximum A Posteriori (MAP) Estimation

• MAP estimation tries to maximize the probability of the posterior, using a Bayesian approach

• Θ̂n = argmax
θ

pΘ|X(θ|x) = argmax
θ

pX|Θ(x|Θ)fΘ(θ)
pX(x)

– As with MLE, sometimes it is more convenient to use the log of the posterior instead
– To simplify the computation we often pick a prior for Θ that matches the form of the likelihood

function; this is known as a conjugate prior ; important ones include:
* Beta: binomial, geometric
* Dirichlet: multinomial
* Gamma: Poisson, exponential
* Gaussian: Gaussian

– Note the distribution pX(x) usually doesn’t matter since it’s constant wrt θ

• Example: binomial distribution pX|Θ(x|θ) =
(

n

k

)
θk(1 − θ)n−k = n!

k!(n − k)!θ
k(1 − θ)n−k

– There are many possible shapes of priors
– These are all represented by the beta distribution fΘ(θ) = cθα−1(1−θ)β−1 where α, β > 0, 0 ≤ θ ≤ 1

and c is a normalization constant
* When α = β = 1 this is uniform
* c = 1

B(α, β) where B(α, β) = Γ(α)Γ(β)
Γ(α + β)

• Note Γ(m + 1) = m! for integer m

* If α, β are integers then 1
B(α, β) = (α + β − 1)!

(α − 1)!(β − 1)!
* This has mean at E[Θ] = 1

B(α, β)

=
� 1

0
θfΘ(θ) dθ

=
� 1

0
θα(1 − θ)β−1 dθ

= B(α + 1, β)
B(α, β)

= Γ(α + β)
Γ(α)Γ(β)

Γ(α + 1)Γ(β)
Γ(α + β + 1)

= α

α + β

* Maximum at θ = α − 1
α + β − 2

– The beta distribution is the conjugate prior of the binomial distribution

– pX|Θ(x|θ)fΘ(θ) =
(

n
k

)
B(α, β)θk+α−1(1 − θ)n−k+β−1

– pX(x) =
(

n
k

)
B(α, β)

� 1

0
θk+α−1(1 − θ)n−k+β−1 dθ

* Note that the integral is just B(k + α, n − k + β)

* Therefore pX(x) = n!
k!(n − k)!

Γ(α + β)Γ(k + α)Γ(n − k + β)
Γ(α)Γ(β)Γ(α + n + β)

– Solve d
dθ

log fΘ|X(θ|x) = 0

* d
dθ

log
(
cθk+α−1(1 − θ)n−k+β−1)

= k + α − 1
θ

− n − k + β − 1
1 − θ

= 0

* θ̂ = k + α − 1
n + α + β − 2
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– The choice of α and β depends on our knowledge of the prior, e.g. where it peaks, how much
variance it has, etc

* Notice that lim
n→∞

θ̂MAP = k

n
= θ̂ML

* As we take more and more trials, the prior distribution of θ becomes irrelevant since the
estimate converges by the weak law

Least Mean Square and Conditional Expectation
• We want to find an estimator that minimizes the mean squared difference between the true value and

the estimated value
– This is another Bayesian approach since we need the prior

• θ̂LMS = argmin
θ̂

E[(θ̂ − Θ)2] = E[Θ|X = x]

• Suppose we have no data, so we estimate Θ by a constant θ̂:
– E[(θ̂ − Θ)2] = E[Θ2 − 2Θθ̂ + θ̂2] = θ̂2 − 2θ̂E[Θ] + E[Θ]
– Differentiate: 2θ̂ − 2E[Θ] = 0
– So in this case the best estimate is θ̂ = E[Θ]

• If we do have data:
– E[(θ̂ − Θ)2] = E[E[(θ̂ − Θ)2|x]] =

� ∞

−∞
E[(Θ − θ̂)|X = x]fX(x) dx

– This can then be minimized by taking θ̂ = E[Θ|X = x] following the same derivation as the case
above

Comparison of MLE, MAP, and LMS Estimation
• Let Θ have a prior uniform on [0, 1] and let X be distributed as uniformly on [0, Θ]

– The joint distribution covers a triangular area
– f(x|θ) is uniform from 0 to θ with value 1

θ

– f(x, θ) = f(x|θ)f(θ) = 1
θ

1
1 = 1

θ
, 0 < x < θ < 1

• For ML:
– Maximize f(x|θ)
– We need θ ≥ x because otherwise the value of x couldn’t possibly occur
– And note f(x|θ) = 1

θ
on x ∈ [0, θ] so to maximize this we take θ as small as possible

– Therefore θ̂ML = x
• For MAP:

– f(θ|x) = f(x|θ)f(θ)
f(x) = f(θ, x)� 1

x
f(θ, x) dθ

= 1
θ ln 1

x

, 0 < x < θ < 1

– To maximize this we again take θ̂MAP = x
– For this problem, the MAP and ML estimates are the same

• For LMS:
– θ̂LMS = E[Θ|x] =

� 1

x

θf(θ|x) dθ =
� 1

x

θ

θ ln 1
x

dθ = 1 − x

ln 1
x

– In this case LMS is less conservative
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