Lecture 5, Jan 22, 2024

Maximum A Posteriori (M AP) Estimation

e MAP estimation tries to maximize the probability of the posterior, using a Bayesian approach
A pxje(x|0)fo(0)
» O, = argmax pg|x (f|x) = argmax ————~——
0 0 px ()
— As with MLE, sometimes it is more convenient to use the log of the posterior instead
— To simplify the computation we often pick a prior for © that matches the form of the likelihood
function; this is known as a conjugate prior; important ones include:
* Beta: binomial, geometric

Dirichlet: multinomial
Gamma: Poisson, exponential
Gaussian: Gaussian
— Note the distribution px (x) usually doesn’t matter since it’s constant wrt 6
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+ Example: binomial distribution px|e(z|0) = Z) 0F (1 — )"k =
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— There are many possible shapes of priors
— These are all represented by the beta distribution fo(6) = 8% 1(1—0)°~1 where a, 3 > 0,0 <0 < 1
and c is a normalization constant
* When o = 8 = 1 this is uniform
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* This has mean at F[0] =

a—1
a+p—2
The beta distribution is the conjugate prior of the binomial distribution
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* Note that,the i(I)ltegral is just B(k+ a,n —k+ )
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— Solve %log foix(0lz) =0

* Maximum at 6 =

* Therefore px (x) =
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— The choice of « and 8 depends on our knowledge of the prior, e.g. where it peaks, how much
variance it has, etc
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* Notice that lim Oyap = — = O
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* As we take more and more trials, the prior distribution of 6§ becomes irrelevant since the
estimate converges by the weak law

Least Mean Square and Conditional Expectation

e« We want to find an estimator that minimizes the mean squared difference between the true value and
the estimated value

_ — This is another Bayesian approach since we need the prior
o Opps = argmin E[() — ©)%] = E[6|X = z]
6

e Suppose we have no data, so we estimate © by a constant 0:
~ E[(6 — ©)?] = E[6? — 200 + %] = §* — 20E[6] + E[0)]
— Differentiate: 260 — 2E[@] =0
~ So in this case the best estimate is § = E[©]

e If we do have data:

- B0~ 6] = [0 - 0] - | " B0 - 6)X = 2]fx(2) da

~ This can then be minimized by taking § = E[©]|X = x] following the same derivation as the case
above

Comparison of MLE, MAP, and LMS Estimation

o Let © have a prior uniform on [0, 1] and let X be distributed as uniformly on [0, O]
— The joint distribution covers a triangular area
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— f(x]0) is uniform from 0 to 6 with value —

0
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e For ML:
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— Maximize f(xz|0)
— We need 6 > x because otherwise the value of z couldn’t possibly occur
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— And note f(z|f) = - on z € [0, 6] so to maximize this we take 6 as small as possible
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— Therefore éML =x
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— f(Olz) = @) :f;f(e,x)d9_9lni’o<x<9<l

— To maximize this we again take fyiap = =

— For this problem, the MAP and ML estimates are the same
e For LMS:
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— In this case LMS is less conservative
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