Lecture 4, Jan 19, 2024

Maximum Likelihood Estimation

- Let $\boldsymbol{X} = (X_1, \dots, X_n)$ and $\boldsymbol{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ be our samples
- Given the distribution $p_X(x;\theta)$ that depends on θ , and suppose we don't know the distribution of θ (denoted by the semicolon)
 - This is known as the *likelihood function*
- The maximum likelihood estimate of θ maximizes the likelihood, $\Theta_n = \operatorname{argmax} p_{\boldsymbol{X}}(\boldsymbol{x}; \theta)$
- Sometimes instead of likelihood directly we maximize its log instead
 - If X_1, \ldots, X_n are IID, then $p_{\boldsymbol{X}}(\boldsymbol{x}; \theta) = \prod_{i=1}^n p_{X_i}(x_i; \theta)$ - Therefore $\log(p_{\boldsymbol{X}}(\boldsymbol{x};\theta)) = \sum_{i=1}^{n} \log(p_{X_i}(x_i;\theta))$

- Instead of maximize the total likelihood we can maximize the sum of the logs of the marginals

- Example: Bernoulli RV, $p_X(0;\theta) = 1 \theta, p_X(1;\theta) = \theta$
 - If we do this n times, then $p_{\mathbf{X}}(x_1, \ldots, x_n; \theta) = \theta^k (1-\theta)^{n-k}$ where k is the number of 1s we got – The log likelihood is then $k \log \theta + (n-k) \log(1-\theta)$
 - Differentiate wrt θ and set to zero: $\frac{\mathrm{d}}{\mathrm{d}\theta} \log p_X(\boldsymbol{x};\theta) = \frac{k}{\theta} \frac{n-k}{1-\theta} = 0$

 - The MLE estimation is then $\hat{\Theta}_n = \frac{k}{n}$ We say that k is a *sufficient statistic* for this ML estimator of θ ; instead of holding onto all the data we only need to keep track of k
 - We can take the expected value to see that this goes to θ , so the estimator is unbiased
 - Since this is the sample mean, weak law convergence applies, so the estimator is consistent

Laplace: Will the Sun Rise Tomorrow?

- Suppose the sun has risen n consecutive days, $X_1 = 1, \ldots, X_n = 1$
- What is the probability that the sun will rise tomorrow?
- A frequentist approach would use the MLE estimate $\hat{\Theta}_n = \frac{n}{n} = 1$, so the sun surely rises and this estimate does not change as the number of days increases
- What about a Bayesian approach?
 - Suppose θ is a uniform random variable in the interval [0, 1]
 - Now we can find the posterior distribution of θ

$$- f_{\theta|\mathbf{X}_n}(\theta|x_1,\ldots,x_n) = \frac{p_{\mathbf{X}_n}(x_1,\ldots,x_n|\theta)f_{\theta}(\theta)}{p_{\mathbf{X}_n}(x_1,\ldots,x_n)}$$
$$- p_{\mathbf{X}_n}(x_1,\ldots,x_n|\theta) = \theta^n \text{ if } x_1,\ldots,x_n = 1$$

- So the probability of *n* consecutive 1s is $p_{\mathbf{X}}(1,\ldots,1) = \int_{-\infty}^{1} \theta^n f_{\theta}(\theta) \, \mathrm{d}\theta = \int_{-\infty}^{1} \theta^n \, \mathrm{d}\theta = \frac{1}{1+1}$

- Therefore
$$P[X_{n+1} = 1|X_1 = 1, \dots, X_n = 1] = \frac{P[X_1 = 1, \dots, X_n = 1 \cap X_{n+1} = 1]}{P[X_1 = 1, \dots, X_n = 1]} = \frac{\frac{1}{n+2}}{\frac{1}{n+1}} = \frac{1}{\frac{1}{n+1}}$$

$$\frac{n+1}{n+2}$$

• Another way is to use the conditional expectation $\hat{\Theta}_n(x) = E[\Theta|\mathbf{X} = \mathbf{x}]$

$$-P[X_{n=1} = 1 | X_1 = 1, \dots, X_n = 1] = E[\Theta | \mathbf{X}_n = \mathbf{1}]$$
$$= \int_0^1 \theta f_{\theta | \mathbf{X}_n}(\theta | 1, \dots, 1) \, \mathrm{d}\theta$$
$$= \int_0^1 \theta \frac{\theta^n}{\frac{1}{n+1}} \, \mathrm{d}\theta$$
$$= \frac{n+1}{n+2}$$