
Lecture 3, Jan 15, 2024
Sum of Random Variables

• Let Sn =
n∑

i=1
Xi

• We can show that E[Sn] = E[X1 + · · · + Xn] =
n∑

i=1
E[Xi]

– Note that although E[Sn] is on the joint PDF of all the X random variables, E[Xi] is on the
marginal only, i.e. fXi

– The expected value of a sum is always the sum of the expected values in all cases
• For variance: Var[Sn] = E[(Sn − E[Sn])2]

= E

( n∑
i=1

(Xi − mXi)
)2


= E

( n∑
i=1

(Xi − mXi)
) n∑

j=1
(Xj − mXj )


=

n∑
i=1

n∑
j=1

Cov(Xi, Xj)

=
n∑

i=1
Var[Xi] +

∑
i ̸=j

∑
j

Cov(Xi, Xj)

– If all Xi, Xj are pairwise uncorrelated, then Var[Sn] =
n∑

i=1
Var[Xi]

– But in general, the variance of a sum of RVs is not the sum of the variances
• Suppose that the Xs are independent and identically distributed (IID)

– This means fX(x1, . . . , xn) = fX1(x1) · · · fXn
(xn) = fX(x1) · · · fX(xn) =

n∏
i=1

fX(xi)

– It follows that all the Xs will have the same mean m and variance σ2

– Therefore E[Sn] = nm, Var[Sn] = nσ2

• Let the sample mean be Mn = 1
n

n∑
i=1

Xi = 1
n

Sn

– Assuming IID:

* E[Mn] = E

[
1
n

Sn

]
= 1

n
E[Sn] = m

* Var[Mn] = Var
[

1
n

Sn

]
= 1

n2 Var[Sn] = σ2

n
– With increasing n, the expected value is unchanged but the variance decreases; this means to

estimate E[X], we can repeat the same experiment and take the mean to get a smaller variance in
our results

• To formalize this, we can apply Chebyshev’s inequality to the mean

– P [|X − mX | ≥ ϵ] ≤ σ2
X

ϵ2

– Applied to the sample mean: P [|Mn − E[X]| ≥ ϵ] ≤ Var[Mn]
ϵ2 = σ2

nϵ2 = 1 − δ

– Given any error tolerance ϵ and probability 1 − δ, we can always select n such that the probability
of Mn being within the tolerance of the true mean is 1 − δ or greater

– This is also known as convergence in probability
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Theorem

Chebyshev’s Inequality:

P [|X − mX | ≥ ϵ] ≤ σ2
X

ϵ2

Alternatively stated as
P [|X − mX | ≥ kσ] ≤ 1

k2

Theorem

Weak Law of Large Numbers:
lim

n→∞
P [|Mn − E[X]| < ϵ] = 1

That is, as the sample size N increases, the probability of the sample mean being within ϵ of the true
mean approaches 1, where ϵ is any arbitrarily small positive number.

Strong Law of Large Numbers: Given IID Xi with finite mean,

P
[

lim
n→∞

|Mn − E[X]| < ϵ
]

= 1

• SLLN asserts a much stronger form of convergence to E[X]
– Notice that for SLLN the limit is outside the probability
– The weak law states that for a certain value of n, most of the observed values of Mn will be close

to E[X]
* WLLN does not address what happens to the sample mean for a specific sequence of random

variables
– The strong law states that every sequence of sample mean calculations will eventually approach

and stay close to E[X]
• Consider an event A and suppose we want to find p = P [A]

– Let the indicator function for A be I =
{

1 s ∈ A

0 s /∈ A

* Note that E[I] = 1 · P [A] + 0 · (1 − P [A]) = P [A] = p
* Var[I] = E[(I − E[I])2] = E[(I − p)2] = (1 − p)2p + (−p)2(1 − p) = p(1 − p)

– Repeat the experiment n times so we have Sn = I1 + I2 + · · · + In equal to the number of times
that A occurred

– The relative frequency of A is fn = Sn

n
, so E[fn] = E[Sn]

n
= p

– Var[fn] = σ2

n
= p(1 − p)

n
≤ 1

4n
* But we don’t know p, so instead we note p(1 − p) is bounded by 1/4
* Therefore Var[fn] ≤ 1

4n
– This gives us a way to estimate p while bounding the variance on our estimate

* e.g. we want to be within 1
10 of the true probability 90% of the time

• Chebyshev: P [|fn − p| > 0.1︸︷︷︸
ϵ

] ≤ 0.1︸︷︷︸
δ

, then 0.1 = p(1 − p)
n0
( 1

10
)2 ≤ 1

4n0
( 1

10
)2

• Solve to get n0 > 250

Introduction to Parameter Estimation
• Given an IID sequence of random variables, we want to estimate a parameter θ of the distribution X

– The distribution depends on θ; it can be e.g. for Bernoulli it is θ = P [X = 1]; for a Gaussian
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θ = (mX , σ2)
– Θ̂n is an estimator of the unknown parameter

• Note that the estimator is a function of the RVs, Θ̂n(X)
• Estimators have the following properties:

– The error is Θ̂n(X) − θ
* This is how much the estimate is off by from the true value

– The bias is E[Θ̂n(X)] − θ
* This is whether we get the correct estimate on average

– An estimator is unbiased if the expected value of the error is zero, i.e. the bias is zero
* i.e. on average, our estimate will be correct

– An estimator is asymptotically unbiased if lim
n→∞

E[Θn(X)] = θ, even if it’s not unbiased

– An estimator is consistent if as n → ∞, the distribution of Θ̂n converges to θ (weak law)
* i.e. as the sample size increases, the estimates become more and more concentrated around θ
* Consistency implies asymptotic unbiasedness (if the estimator has finite variance) but the

reverse is not true
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