Lecture 3, Jan 15, 2024

Sum of Random Variables

- Let $S_n = \sum_{i=1}^n X_i$
- We can show that $E[S_n] = E[X_1 + \dots + X_n] = \sum_{i=1}^n E[X_i]$
 - Note that although $E[S_n]$ is on the joint PDF of all the X random variables, $E[X_i]$ is on the marginal only, i.e. f_{X_i}
 - The expected value of a sum is always the sum of the expected values in all cases
- For variance: $\operatorname{Var}[S_n] = E[(S_n E[S_n])^2]$

$$= E\left[\left(\sum_{i=1}^{n} (X_i - m_{X_i})\right)^2\right]$$
$$= E\left[\left(\sum_{i=1}^{n} (X_i - m_{X_i})\right)\left(\sum_{j=1}^{n} (X_j - m_{X_j})\right)\right]$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}(X_i, X_j)$$
$$= \sum_{i=1}^{n} \operatorname{Var}[X_i] + \sum_{i \neq j} \sum_{j} \operatorname{Cov}(X_i, X_j)$$

- If all X_i, X_j are pairwise uncorrelated, then $\operatorname{Var}[S_n] = \sum_{i=1}^{n} \operatorname{Var}[X_i]$

- But in general, the variance of a sum of RVs is not the sum of the variances

• Suppose that the Xs are independent and identically distributed (IID)

- This means
$$f_{\mathbf{X}}(x_1, \dots, x_n) = f_{X_1}(x_1) \cdots f_{X_n}(x_n) = f_X(x_1) \cdots f_X(x_n) = \prod_{i=1}^n f_X(x_i)$$

- It follows that all the Xs will have the same mean m and variance σ^2 Therefore $E[S_n]=nm, \mathrm{Var}[S_n]=n\sigma^2$

• Let the sample mean be
$$M_n = \frac{1}{n} \sum_{i=1}^n X_i = \frac{1}{n} S_n$$

- Assuming IID:

*
$$E[M_n] = E\left[\frac{1}{n}S_n\right] = \frac{1}{n}E[S_n] = m$$

* $\operatorname{Var}[M_n] = \operatorname{Var}\left[\frac{1}{n}S_n\right] = \frac{1}{n^2}\operatorname{Var}[S_n] = \frac{\sigma^2}{n}$

- With increasing n, the expected value is unchanged but the variance decreases; this means to estimate E[X], we can repeat the same experiment and take the mean to get a smaller variance in our results
- To formalize this, we can apply Chebyshev's inequality to the mean

$$- P[|X - m_X| \ge \epsilon] \le \frac{\sigma_X^2}{\epsilon^2}$$

- Applied to the sample mean: $P[|M_n E[X]| \ge \epsilon] \le \frac{\operatorname{Var}[M_n]}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2} = 1 \delta$
- Given any error tolerance ϵ and probability 1δ , we can always select n such that the probability of M_n being within the tolerance of the true mean is $1 - \delta$ or greater
- This is also known as *convergence in probability*

Theorem

Chebyshev's Inequality:

$$P[|X - m_X| \ge \epsilon] \le \frac{\sigma_X^2}{\epsilon^2}$$

Alternatively stated as

$$P[|X - m_X| \ge k\sigma] \le \frac{1}{k^2}$$

Theorem

Weak Law of Large Numbers:

$$\lim_{n \to \infty} P[|M_n - E[X]| < \epsilon] = 1$$

That is, as the sample size N increases, the probability of the sample mean being within ϵ of the true mean approaches 1, where ϵ is any arbitrarily small positive number.

Strong Law of Large Numbers: Given IID X_i with finite mean,

$$P\left[\lim_{n \to \infty} |M_n - E[X]| < \epsilon\right] = 1$$

- SLLN asserts a much stronger form of convergence to E[X]
 - Notice that for SLLN the limit is outside the probability
 - The weak law states that for a certain value of n, most of the observed values of M_n will be close to E[X]
 - * WLLN does not address what happens to the sample mean for a specific sequence of random variables
 - The strong law states that every sequence of sample mean calculations will eventually approach and stay close to E[X]
- Consider an event A and suppose we want to find p = P[A]
 - Let the *indicator function* for A be $I = \begin{cases} 1 & s \in A \\ 0 & s \notin A \end{cases}$
 - * Note that $E[I] = 1 \cdot P[A] + 0 \cdot (1 P[A]) = P[A] = p$

*
$$\operatorname{Var}[I] = E[(I - E[I])^2] = E[(I - p)^2] = (1 - p)^2 p + (-p)^2 (1 - p) = p(1 - p)^2 p + (-p)^2 (1 - p) = p(1 - p)^2 p + (-p)^2 p + (-p)^$$

- * $\operatorname{Var}[I] = E[(I E[I])^2] = E[(I p)^2] = (1 p)^2 p + (-p)^2 (1 p) = p(1 p)$ Repeat the experiment *n* times so we have $S_n = I_1 + I_2 + \dots + I_n$ equal to the number of times that A occurred
- The relative frequency of A is $f_n = \frac{S_n}{n}$, so $E[f_n] = \frac{E[S_n]}{n} = p$

$$\operatorname{Var}[f_n] = \frac{\sigma^2}{n} = \frac{p(1-p)}{n} \le \frac{1}{4n}$$

* But we don't know p, so instead we note p(1-p) is bounded by 1/4

* Therefore
$$\operatorname{Var}[f_n] \leq \frac{1}{4}$$

- This gives us a way to estimate p while bounding the variance on our estimate * e.g. we want to be within $\frac{1}{10}$ of the true probability 90% of the time

 - Chebyshev: $P[|f_n p| > \underbrace{0.1}_{\epsilon}] \le \underbrace{0.1}_{\delta}$, then $0.1 = \frac{p(1-p)}{n_0 \left(\frac{1}{10}\right)^2} \le \frac{1}{4n_0 \left(\frac{1}{10}\right)^2}$ • Solve to get $n_0 > 250$

Introduction to Parameter Estimation

• Given an IID sequence of random variables, we want to estimate a parameter θ of the distribution X – The distribution depends on θ ; it can be e.g. for Bernoulli it is $\theta = P[X = 1]$; for a Gaussian $\theta = (m_X, \sigma^2)$

 $-\hat{\Theta}_n$ is an estimator of the unknown parameter

- Note that the estimator is a function of the RVs, $\hat{\Theta}_n(X)$
- Estimators have the following properties:
 - The error is $\hat{\Theta}_n(\mathbf{X}) \theta$
 - * This is how much the estimate is off by from the true value
 - The bias is $E[\hat{\Theta}_n(\boldsymbol{X})] \theta$
 - * This is whether we get the correct estimate on average
 - An estimator is *unbiased* if the expected value of the error is zero, i.e. the bias is zero * i.e. on average, our estimate will be correct
 - An estimator is *asymptotically unbiased* if $\lim_{n\to\infty} E[\Theta_n(\mathbf{X})] = \theta$, even if it's not unbiased An estimator is *consistent* if as $n \to \infty$, the distribution of $\hat{\Theta}_n$ converges to θ (weak law)
 - - * i.e. as the sample size increases, the estimates become more and more concentrated around θ
 - * Consistency implies asymptotic unbiasedness (if the estimator has finite variance) but the reverse is not true