Lecture 3, Jan 15, 2024

Sum of Random Variables

o Let Sn = i:)(z
i=1

o We can show that E[S,] = E[X1 + - ZE

— Note that although E[S,] is on the joint PDF of all the X random variables, E[X,] is on the
marginal only, i.e. fx;,
— The expected value of a sum is always the sum of the expected values in all cases
o For variance: Var[S,] = E[(S, — E[S,])?]
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— If all X;, X; are pairwise uncorrelated, then Var[S Z Var[X

— But in general, the variance of a sum of RVs is not the sum of the variances
e Suppose that the Xs are independent and identically distributed (IID)

- This means fx(l‘l, e ,Z‘n) = le (.131) e an (.In) = fx(l‘l) fX l‘n HfX -Tz

— Tt follows that all the X's will have the same mean m and variance o>
— Therefore E[S,] = nm, Var[S,] = no?
1 n
e Let the sample mean be M, = — ZXi =
n-
— Assuming IID:
1 1
* EIM,|=F {S’n] =—E[S;]=m
n n
1 1 2
* Var[M,] = Var |~ | = = Var[S,] = 7
n?2 n
— With increasing n, the expected value is unchanged but the variance decreases; this means to
estimate E[X], we can repeat the same experiment and take the mean to get a smaller variance in
our results
e To formalize this, we can a2pp1y Chebyshev’s inequality to the mean
- P[X —mx|>d <X

€
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— Applied to the sample mean: P[|M,, — E[X]| > ¢] < # = 0—2 =1-6
€ ne
— Given any error tolerance € and probability 1 — §, we can always select n such that the probability
of M,, being within the tolerance of the true mean is 1 — § or greater

— This is also known as convergence in probability



Chebyshev’s Inequality:

ok
P[|X —mx]| Z€]§€—2

Alternatively stated as
1
k2

Weak Law of Large Numbers:

P[|X —mx]| > ko] <

lim P[|M, — E[X]| <=1

n—oo

That is, as the sample size N increases, the probability of the sample mean being within e of the true
mean approaches 1, where € is any arbitrarily small positive number.

Strong Law of Large Numbers: Given IID X; with finite mean,

P [nli_)ngo|Mn — E[X]| < e] =1

o SLLN asserts a much stronger form of convergence to E[X]
— Notice that for SLLN the limit is outside the probability
— The weak law states that for a certain value of n, most of the observed values of M,, will be close
to E[X]
* WLLN does not address what happens to the sample mean for a specific sequence of random
variables
— The strong law states that every sequence of sample mean calculations will eventually approach
and stay close to F[X]
o Consider an event A and suppose we want to find p = P[A]
1 sed
0 s¢A
* Note that E[I] =1 P[A]+0-(1— P[A]) =P[A]=p
* Var[l] = E[(I - E[1]))) = E[(I - p)’] = (1 = p)*p + (=)’ (1 = p) = p(1 — )
— Repeat the experiment n times so we have S, = I; + I> + - -+ + I, equal to the number of times
that A occurred

— Let the indicator function for A be I =

— The relative frequency of A is f,, = %, so Elf,] = E[fn] =p
2 1-— 1

- Var[fn]:”_:ug_
n in

* But we don’t know p, so instead we note p(1 — p) is bounded by 1/4
1
* Therefore Var[f,] < n
n
— This gives us a way to estimate p while bounding the variance on our estimate

1
* e.g. we want to be within 0 of the true probability 90% of the time

1—
] < 01, then 0.1 = P2L=P)

o Chebyshev: P[|f, —p| > 0.1 0. 5 < 5
M no (75)"  4no (55)

e Solve to get ng > 250

Introduction to Parameter Estimation

e Given an IID sequence of random variables, we want to estimate a parameter 6 of the distribution X
— The distribution depends on 8; it can be e.g. for Bernoulli it is § = P[X = 1]; for a Gaussian



0= (mx, 02)
~ O, is an estimator of the unknown parameter
« Note that the estimator is a function of the RVs, ©,,(X)
o Estimators have the following properties:
~ The error is ©,,(X) — 6
* This is how much the estimate is off by from the true value
— The bias is E[0,(X)] — 0
* This is whether we get the correct estimate on average
— An estimator is unbiased if the expected value of the error is zero, i.e. the bias is zero
* i.e. on average, our estimate will be correct

— An estimator is asymptotically unbiased if lim E[©,(X)] =0, even if it’s not unbiased
n—oo

— An estimator is consistent if as n — oo, the distribution of ©,, converges to 6 (weak law)
* i.e. as the sample size increases, the estimates become more and more concentrated around 6
* Consistency implies asymptotic unbiasedness (if the estimator has finite variance) but the
reverse is not true
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