Lecture 20, Apr 1, 2024
Hidden Markov Models

e Suppose we have a Markov chain Z7,..., Zy, and instead of being able to observe Z; directly, we
instead observe X7, ..., Xy, where p(x;|z;) is known, i.e. we observe the states with some noise
— This is known as a hidden Markov model
— e.g. sequence of speech, robot locations, pixels in handwriting, etc
— p(x;|2;) are the emission probabilities (what we can observe)
— We’d like to perform inference on this, such as MAP estimation like we did with graphical models
before

= p(21,. 52N, 21, 2n) = p(zlE)p(T) = pa Hp Zn|2n—1 prm\zm

* This gives the joint distribution of states and meaburements

Figure 1: Illustration of a hidden Markov model.

o Example: two-state HMM: Z; are binary variables; observation X; is equal to Z; with probability 1 — €
and its complement with probability e

p=o3)
[

1 —« o

1—c¢ €
Pe_[€ 1—6]

* This is the matrix of emission probabilities
— The figure below shows a trellis diagram, which has one column for each time, one row for each
state, and transition probabilities
* Every possible realization of Z1, ..., Zy corresponds to a path across the Trellis diagram
* The probability of the sequence is the product of its initial state and the corresponding
transition probabilities
* The “length” of a path is its log probability, equal to the sum of the logs of the probabilities
of its transitions
— Observing X; = k gives a hint about the likelihood of Z,, = j through the emission probability

k=0 O i

k=
21) 23 Zn

Figure 2: Trellis diagram for the example.

e Once we make the observations, x is no longer a random variable, but known observations

« Note p(z,) = p(z1)p(x1]|21)p(22]21)p(22|22) . . . p(xN|2N)P(2N 2N 1) = P (21, 1) (21, 22, 22) - .. Y (2pn—1, 2N, TN)
— We group together every pair of transition probability and emission probability

e With this factorized form, we can use message passing to find the most likely value at time n,

z = argmax p(z,,) or the most likely sequence z* = argmax p(z, x)
Zn Z1y9ZN

Z1 22 Zn ZN
T i) I TN
Figure 3: HMM converted to a factor graph.

z - .z - ZN-1 z
- fo f e N

h : J2 : Jn : fos1 JN—-1 : :

Q(Z’n)

—_——— - == —
R RO
« O = O =

B(z.)
(—

Figure 4: Simplified factor graph after observing .

e The HMM can be converted into a factor graph
— Since z; are observed, they can be combined into the factors between z;
— h(z1) = p(z1)p(x1]21) is the initial factor
- fn(znfla Zn) = P(Zn|2n—1)l?($n‘zn)
— Factor node f,,_1 comes before the variable node z,_1
e At each node the following happens:
— At a variable node z,_1, we only have a single factor coming in, so the message created is simply
the message from the preceding factor node, ., |5, (2n—1) = fp, 1201 (Zn-1)
* Messages are passed right through without modification
— At a factor node f,, we marginalize the product of its factor and the incoming message, so
Hfp—z, (Zn) = Z fn(zn—la zn),uzn,l—ncn (Zn—l)
Zn—1
* Multiply the factor by the incoming message and marginalize the variable of the incoming
message
* This is similar to a matrix multiplication
— Messages that pass from right to left can be simplified similarly
o Let a(zn) = g, -z, (2n) (left to right message) and B(z,) = iy, ., -2, (2n) (right to left message)

= a(zn) = p(n|2n) Z a(2n—1)p(2n|2n-1)
Zn—1
* Obtained by substituting what we had above
* This is like computing the next state probability normally, but multiplying by the hint,
p(xn|2n), for each possible state
* Each possible value of state z, is weighed by the hint

— B(zn) = jg: B(zn+1)P(Tnt1l2n41)P(2n+1]2n)
Zn41
* In this case we cannot move the hint outside the summation, since the hint is from the node
we came from, z,41, which is the one we sum over
= a(21) = p(z1)p(21]21)
- Blan) =1
o Therefore the joint distribution when the messages meet is p(z,,) = a(z,)8(zn)
p(zn, @) alzn)B(zn)
) =) "y Pl
— This is the marginal of z,, given the observations
— This can also be a form of normalization, since p(z,,x) is going to have very small values due to
the large number of observations
e If we condition on z,, it disconnects the chain on its two sides
— alzn) =p(T1, .-y T, 2n)
= B(zn) = P(@nt1,- -, 2N |20)
— a(zy,) encapsulates all the information of the observations prior to z,, and 3(z,) encapsulates all
the information provided by observations after z,

Forward-Backward (Baum-Welch) Algorithm

o Both a(z,) and 5(z,) involve multidimensional distributions, so computing them deals with very small
probabilities; this introduces round-off errors when working with numbers of normal magnitudes
o For numerical stability it’s better to normalize o and 3:

o __olm)
a@@—m%fw~@“—g?wwﬁa .
5 _ P(Tpt1,---, TN|2n _ Zn

Blan) P(Tnt1s-- s xn|TL, o Tn) DTty TN|TT, o, Tn)
— Note &(zy)B(zn) = (zn)B(20) _ Aen)Blzn) Y(2n) = p(2n|T)

(e) (Mpcinem) P@N)
* This is why we define 8 as above, so it complements «
o We need the normalization p(x,,)
— Let ¢, = p(an|xn_1) = p(zn|z1, ..., Tn-1)

n
= Then p(@,) = p(z1)p(22|21) . .. p(@n|r1,. .. T0-1) = H Cm
m=1
e Substituting & into the old recursive relation for a gives us the recursive relationship for &

= cn@(2n) = p(znl2n) Z &(2n—1)p(2nl2n-1)
Zn—1
o For B we have cu318(20) = Y B(zni1)P(@n41]2n11)P(2n11l2n)
Zn+1
 Using the fact that Z A&(zp) = 1, we obtain an expression for ¢,

Zn

— Cp = Z p(Zn|2n) Z &(2n—1)p(2nl2n-1)
Zn Zn—1
o For each node n, we first calculate &(z,,) for all values of z,, and then find ¢, through the summation;
do this for all nodes up until zy, and then go in the reverse direction to calculate B(zn)
— We need to go in reverse for B since it requires ¢, 1, which we can only get through the forward
pass
— This is called the forward-backward algorithm
o To compute &(z,): for state z, = k, we do the following to find &(z, = k):
— Use the previous values of &(z,—1), multiply by the transition probabilities p(z, = k|z,—1 = j) for
each previous state z,,_1 = 7 and sum
— The sum is multiplied by p(zn|2z, = k), the hint

— After we compute this for each k, we find the normalization ¢,, by summing over the values we
computed for all k£ and taking the inverse
— Using ¢, we find &(z,) by dividing each of the previous results by ¢,

L
! |
[

[] k& (k)

Figure 5: Calculation of &(z,).

To compute (3(z,): for state z, = k, do the following to find 3(z, = k):

— Use the values of 3(zp41), multiply by transition probabilities p(zp41 = j|zn = k) for each j, and
then multiply by the hint p(z,41|2n+1 = J) (note in this case the hint does not distribute), and
sum

— Use ¢, 41, obtained from the forward pass for &, to normalize and find 5(% =k)

Bgﬂ(j)pjk P(Tnt1lg) D j

H(S)‘b&w(x E/ |
oy S)

L []s

Zn Zn+1

Figure 6: Calculation of B (zn). Note the order of indices on the transition probabilities p should be reversed.

Example: Robot Position Estimation

Consider a robot with position described by (2, yn)
At each time it takes an action a,, to stay put, or move up, down, left, or right according to some
transition probability

— The action depends on the previous action; if the robot was previously moving in some direction,

it will continue along that same direction unless it decides to stop

The robot lives in a rectangular grid; at the end, the transition probabilities are such that the robot
never leaves the grid
We have noisy observations of the robot’s position, &, (but not its actions)
Let z, = (Zn, Yn, an) where (z,,y,) is the position at time n and a,, is the previous action

— The state is augmented by the previous action
We have a lot of possible states, but since the actions are local, the transition probability p(z,|zn—1)
will eliminate many prior states as impossible

— Having the noisy observations broadens the set of possible state transitions

Viterbi Algorithm

This algorithm is used to find the most likely sequence of hidden random variables given the observations

We are now looking for z* = argmax p(z, x)
Z1,--,ZN
We create the factor graph in the exact same way as before

In this case, instead of summing to find marginals, we are only interested in the maximums; therefore
we can take the log, since it is a monotonic function
— We couldn’t before because we needed to sum probabilities

N
1
We now look for max <10g - + Z log ¥(x;—1, mz)> where Z is normalization

T1,0 TN ‘
=2

Recall message passing for the max-sum algorithm:
L
— At each variable node, take sum (due to logs) pqg— f(x) = Z W, —a(T)
k=1

* At each leaf we initialize to log1 =0
M
— At each factor node, we find py—,, max log (T, Tomys -y Ty) + Z Hha,,, (T,)
Tong g3 Tmpp X
Jj=1
For a hidden Markov model this simplifies:
= Hhz (21) = logp(z1) + log(p(z1|21) = wi(21)
* This is initialization of the messages
T M2y = foi (2n) = Hfrn—2n (2n)
* Just like the forward-backward algorithm, only a single factor feeds into each variable, so it’s
just passed along

T Hfppi—zn (Zn+l) = IriaX { log frn41 (va Zn+1) F Bzp—faia (Zn) }

* Take the maximum value of the message over all possible values for z,,
Let wpt1(2n41) be the function that records the max at z,, computed for each possible value of z,14
— wWnt1(zn41) = H;ax{logp(znﬂ | 2n) +1log p(Tn+1lznt1) + wnlzn) }

= log p(Tn+1]2n+1) max {logp(2nt1 | 2n) + wn(zn) }

— This recursive relationship for wnnis the core of the Viterbi algorithm
At each step, we compute the best path and store it along with the state that was chosen that led to
the best path; the probability is summed due to the logs
To calculate wy,1(k):

— Take wy(j), the transition probability log p(z,+1 = k|2, = j) and hint log p(zp41]|2n+1 = k) and

add, for each state j at the previous time
— Find the value of j that leads to the max; this is the value of w41 (k)
— Keep track of which j led to the max wy,+1(k), so we can backtrack later

D k an(k)

Figure 7: Illustration of the Viterbi algorithm.

	Lecture 20, Apr 1, 2024
	Hidden Markov Models
	Forward-Backward (Baum-Welch) Algorithm
	Example: Robot Position Estimation
	Viterbi Algorithm

