
Lecture 20, Apr 1, 2024
Hidden Markov Models

• Suppose we have a Markov chain Z1, . . . ,ZN , and instead of being able to observe Zi directly, we
instead observe X1, . . . ,XN , where p(xi|zi) is known, i.e. we observe the states with some noise

– This is known as a hidden Markov model
– e.g. sequence of speech, robot locations, pixels in handwriting, etc
– p(xi|zi) are the emission probabilities (what we can observe)
– We’d like to perform inference on this, such as MAP estimation like we did with graphical models

before

– p(z1, . . . , zN ,x1, . . . ,xN) = p(z|x)p(x) = p(z1)
N∏

n=2
p(zn|zn−1)

N∏
m=1

p(xm|zm)

* This gives the joint distribution of states and measurements

Figure 1: Illustration of a hidden Markov model.

• Example: two-state HMM: Zi are binary variables; observation Xi is equal to Zi with probability 1 − ϵ
and its complement with probability ϵ

– p =
[
0.5
0.5

]
– P =

[
β 1 − β

1 − α α

]
– Pe =

[
1 − ϵ ϵ
ϵ 1 − ϵ

]
* This is the matrix of emission probabilities

– The figure below shows a trellis diagram, which has one column for each time, one row for each
state, and transition probabilities

* Every possible realization of Z1, . . . ,ZN corresponds to a path across the Trellis diagram
* The probability of the sequence is the product of its initial state and the corresponding

transition probabilities
* The “length” of a path is its log probability, equal to the sum of the logs of the probabilities

of its transitions
– Observing Xi = k gives a hint about the likelihood of Zn = j through the emission probability
P [Xn = k|Zn = j]

Figure 2: Trellis diagram for the example.

1

• Once we make the observations, x is no longer a random variable, but known observations
• Note p(z, x) = p(z1)p(x1|z1)p(z2|z1)p(x2|z2) . . . p(xN |zN)p(zN |zN−1) = ψ(z1,x1)ψ(z1, z2,x2) . . . ψ(zn−1, zN ,xN)

– We group together every pair of transition probability and emission probability
• With this factorized form, we can use message passing to find the most likely value at time n,
z∗

n = argmax
zn

p(zn, x) or the most likely sequence z∗ = argmax
z1,...,zN

p(z, x)

Figure 3: HMM converted to a factor graph.

Figure 4: Simplified factor graph after observing x.

• The HMM can be converted into a factor graph
– Since xi are observed, they can be combined into the factors between zi

– h(z1) = p(z1)p(x1|z1) is the initial factor
– fn(zn−1, zn) = p(zn|zn−1)p(xn|zn)
– Factor node fn−1 comes before the variable node zn−1

• At each node the following happens:
– At a variable node zn−1, we only have a single factor coming in, so the message created is simply

the message from the preceding factor node, µzn−1→fn(zn−1) = µfn−1→zn−1(zn−1)
* Messages are passed right through without modification

– At a factor node fn we marginalize the product of its factor and the incoming message, so
µfn→zn

(zn) =
∑
zn−1

fn(zn−1, zn)µzn−1→fn
(zn−1)

* Multiply the factor by the incoming message and marginalize the variable of the incoming
message

* This is similar to a matrix multiplication
– Messages that pass from right to left can be simplified similarly

• Let α(zn) = µfn→zn
(zn) (left to right message) and β(zn) = µfn+1→zn

(zn) (right to left message)
– α(zn) = p(xn|zn)

∑
zn−1

α(zn−1)p(zn|zn−1)

* Obtained by substituting what we had above
* This is like computing the next state probability normally, but multiplying by the hint,
p(xn|zn), for each possible state

* Each possible value of state zn is weighed by the hint

2

– β(zn) =
∑
zn+1

β(zn+1)p(xn+1|zn+1)p(zn+1|zn)

* In this case we cannot move the hint outside the summation, since the hint is from the node
we came from, zn+1, which is the one we sum over

– α(z1) = p(z1)p(x1|z1)
– β(zN) = 1

• Therefore the joint distribution when the messages meet is p(zn, x) = α(zn)β(zn)

– Let γ(zn) = p(zn, x)
p(x) = α(zn)β(zn)

p(x) = p(zn|x)

– This is the marginal of zn given the observations x
– This can also be a form of normalization, since p(zn, x) is going to have very small values due to

the large number of observations
• If we condition on zn, it disconnects the chain on its two sides

– α(zn) = p(x1, . . . ,xn, zn)
– β(zn) = p(xn+1, . . . ,xN |zn)
– α(zn) encapsulates all the information of the observations prior to zn, and β(zn) encapsulates all

the information provided by observations after zn

Forward-Backward (Baum-Welch) Algorithm

• Both α(zn) and β(zn) involve multidimensional distributions, so computing them deals with very small
probabilities; this introduces round-off errors when working with numbers of normal magnitudes

• For numerical stability it’s better to normalize α and β:
– α̂(zn) = p(zn|x1, . . . ,xn) = α(zn)

p(x1, . . . ,xn)

– β̂(zn) = p(xn+1, . . . ,xN |zn)
p(xn+1, . . . ,xN |x1, . . . ,xn) = β(zn)

p(xn+1, . . . ,xN |x1, . . . ,xn)

– Note α̂(zn)β̂(zn) = α(zn)β(zn)
(
∏n

m=1 cm)
(∏N

m=n+1 cm

) = α(zn)β(zn)
p(xN) = γ(zn) = p(zn|x)

* This is why we define β as above, so it complements α
• We need the normalization p(xn)

– Let cn = p(xn|xn−1) = p(xn|x1, . . . ,xn−1)

– Then p(xn) = p(x1)p(x2|x1) . . . p(xn|x1, . . . ,xn−1) =
n∏

m=1
cm

• Substituting α̂ into the old recursive relation for α gives us the recursive relationship for α̂
– cnα̂(zn) = p(xn|zn)

∑
zn−1

α̂(zn−1)p(zn|zn−1)

• For β we have cn+1β̂(zn) =
∑
zn+1

β̂(zn+1)p(xn+1|zn+1)p(zn+1|zn)

• Using the fact that
∑
zn

α̂(zn) = 1, we obtain an expression for cn

– cn =
∑
zn

p(xn|zn)
∑
zn−1

α̂(zn−1)p(zn|zn−1)


• For each node n, we first calculate α̂(zn) for all values of zn, and then find cn through the summation;

do this for all nodes up until zN , and then go in the reverse direction to calculate β̂(zn)
– We need to go in reverse for β̂ since it requires cn+1, which we can only get through the forward

pass
– This is called the forward-backward algorithm

• To compute α̂(zn): for state zn = k, we do the following to find α̂(zn = k):
– Use the previous values of α̂(zn−1), multiply by the transition probabilities p(zn = k|zn−1 = j) for

each previous state zn−1 = j and sum
– The sum is multiplied by p(xn|zn = k), the hint

3

– After we compute this for each k, we find the normalization cn, by summing over the values we
computed for all k and taking the inverse

– Using cn we find α̂(zn) by dividing each of the previous results by cn

Figure 5: Calculation of α̂(zn).

• To compute β̂(zn): for state zn = k, do the following to find β̂(zn = k):
– Use the values of β̂(zn+1), multiply by transition probabilities p(zn+1 = j|zn = k) for each j, and

then multiply by the hint p(xn+1|zn+1 = j) (note in this case the hint does not distribute), and
sum

– Use cn+1, obtained from the forward pass for α̂, to normalize and find β̂(zn = k)

Figure 6: Calculation of β̂(zn). Note the order of indices on the transition probabilities p should be reversed.

Example: Robot Position Estimation

• Consider a robot with position described by (xn, yn)
• At each time it takes an action an to stay put, or move up, down, left, or right according to some

transition probability
– The action depends on the previous action; if the robot was previously moving in some direction,

it will continue along that same direction unless it decides to stop
• The robot lives in a rectangular grid; at the end, the transition probabilities are such that the robot

never leaves the grid
• We have noisy observations of the robot’s position, x̂n (but not its actions)
• Let zn = (xn, yn, an) where (xn, yn) is the position at time n and an is the previous action

– The state is augmented by the previous action
• We have a lot of possible states, but since the actions are local, the transition probability p(zn|zn−1)

will eliminate many prior states as impossible
– Having the noisy observations broadens the set of possible state transitions

Viterbi Algorithm

• This algorithm is used to find the most likely sequence of hidden random variables given the observations

4

• We are now looking for z∗ = argmax
z1,...,zN

p(z, x)

• We create the factor graph in the exact same way as before
• In this case, instead of summing to find marginals, we are only interested in the maximums; therefore

we can take the log, since it is a monotonic function
– We couldn’t before because we needed to sum probabilities

• We now look for max
x1,...,xN

(
log 1

Z
+

N∑
i=2

logψ(xi−1,xi)
)

where Z is normalization

• Recall message passing for the max-sum algorithm:

– At each variable node, take sum (due to logs) µx→f (x) =
L∑

k=1
µflk

→x(x)

* At each leaf we initialize to log 1 = 0

– At each factor node, we find µf→x max
xm1 ,...,xmM

logψf (x,xm1 , . . . ,xmM
) +

M∑
j=1

µxmj
→f (xmj

)


• For a hidden Markov model this simplifies:

– µh→z1(z1) = log p(z1) + log(p(x1|z1) ≡ ω1(z1)
* This is initialization of the messages

– µzn→fn+1(zn) = µfn→zn
(zn)

* Just like the forward-backward algorithm, only a single factor feeds into each variable, so it’s
just passed along

– µfn+1→zn+1(zn+1) = max
zn

{ log fn+1(zn, zn+1) + µzn→fn+1(zn) }
* Take the maximum value of the message over all possible values for zn

• Let ωn+1(zn+1) be the function that records the max at zn, computed for each possible value of zn+1
– ωn+1(zn+1) = max

zn

{ log p(zn+1 | zn) + log p(xn+1|zn+1) + ωn(zn) }

= log p(xn+1|zn+1) max
zn

{ log p(zn+1 | zn) + ωn(zn) }
– This recursive relationship for ωn is the core of the Viterbi algorithm

• At each step, we compute the best path and store it along with the state that was chosen that led to
the best path; the probability is summed due to the logs

• To calculate ωn+1(k):
– Take ωn(j), the transition probability log p(zn+1 = k|zn = j) and hint log p(xn+1|zn+1 = k) and

add, for each state j at the previous time
– Find the value of j that leads to the max; this is the value of ωn+1(k)
– Keep track of which j led to the max ωn+1(k), so we can backtrack later

Figure 7: Illustration of the Viterbi algorithm.

5

	Lecture 20, Apr 1, 2024
	Hidden Markov Models
	Forward-Backward (Baum-Welch) Algorithm
	Example: Robot Position Estimation
	Viterbi Algorithm

