Lecture 20, Apr 1, 2024

Hidden Markov Models

- Suppose we have a Markov chain Z_1, \ldots, Z_N , and instead of being able to observe Z_i directly, we instead observe X_1, \ldots, X_N , where $p(x_i|z_i)$ is known, i.e. we observe the states with some noise
 - This is known as a hidden Markov model
 - e.g. sequence of speech, robot locations, pixels in handwriting, etc
 - $p(x_i|z_i)$ are the *emission probabilities* (what we can observe)
 - We'd like to perform inference on this, such as MAP estimation like we did with graphical models before

$$-p(z_1, \dots, z_N, x_1, \dots, x_N) = p(\boldsymbol{z}|\boldsymbol{x})p(\boldsymbol{x}) = p(z_1) \prod_{n=2}^N p(z_n|z_{n-1}) \prod_{m=1}^N p(x_m|z_m)$$

* This gives the joint distribution of states and measurements

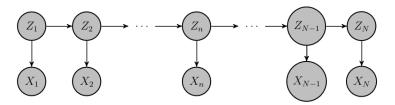


Figure 1: Illustration of a hidden Markov model.

• Example: two-state HMM: Z_i are binary variables; observation X_i is equal to Z_i with probability $1 - \epsilon$ and its complement with probability ϵ

$$- \mathbf{p} = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

$$- \mathbf{P} = \begin{bmatrix} \beta & 1 - \beta \\ 1 - \alpha & \alpha \end{bmatrix}$$

$$- P_e = \begin{bmatrix} 1 - \epsilon & \epsilon \\ \epsilon & 1 - \epsilon \end{bmatrix}$$

- * This is the matrix of emission probabilities
- The figure below shows a *trellis diagram*, which has one column for each time, one row for each state, and transition probabilities
 - * Every possible realization of Z_1,\ldots,Z_N corresponds to a path across the Trellis diagram
 - * The probability of the sequence is the product of its initial state and the corresponding transition probabilities
 - * The "length" of a path is its log probability, equal to the sum of the logs of the probabilities of its transitions
- Observing $X_i = k$ gives a hint about the likelihood of $Z_n = j$ through the emission probability $P[X_n = k | Z_n = j]$

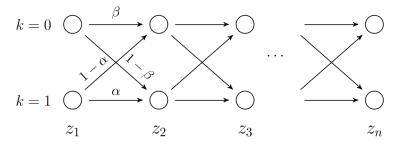


Figure 2: Trellis diagram for the example.

- Once we make the observations, x is no longer a random variable, but known observations
- Note $p(\boldsymbol{z}, \boldsymbol{x}) = p(z_1)p(x_1|z_1)p(z_2|z_1)p(x_2|z_2)\dots p(x_N|z_N)p(z_N|z_{N-1}) = \psi(z_1, x_1)\psi(z_1, z_2, x_2)\dots \psi(z_{n-1}, z_N, x_N)$
 - We group together every pair of transition probability and emission probability
- With this factorized form, we can use message passing to find the most likely value at time n, $z_n^* = \underset{z_1, \dots, z_N}{\operatorname{argmax}} p(z_n, x)$ or the most likely sequence $z^* = \underset{z_1, \dots, z_N}{\operatorname{argmax}} p(z, x)$

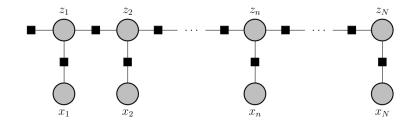


Figure 3: HMM converted to a factor graph.

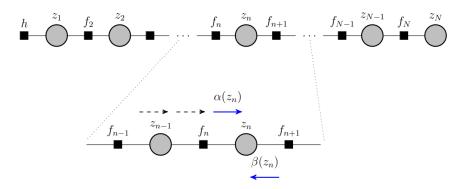


Figure 4: Simplified factor graph after observing x.

- The HMM can be converted into a factor graph
 - Since x_i are observed, they can be combined into the factors between z_i
 - $h(z_1) = p(z_1)p(x_1|z_1)$ is the initial factor
 - $f_n(z_{n-1}, z_n) = p(z_n | z_{n-1}) p(x_n | z_n)$
 - Factor node f_{n-1} comes before the variable node z_{n-1}
- At each node the following happens:
 - At a variable node z_{n-1} , we only have a single factor coming in, so the message created is simply the message from the preceding factor node, $\mu_{z_{n-1}\to f_n}(z_{n-1}) = \mu_{f_{n-1}\to z_{n-1}}(z_{n-1})$
 - * Messages are passed right through without modification
 - At a factor node f_n we marginalize the product of its factor and the incoming message, so $\mu_{f_n \to z_n}(z_n) = \sum_{z_{n-1}} f_n(z_{n-1}, z_n) \mu_{z_{n-1} \to f_n}(z_{n-1})$
 - * Multiply the factor by the incoming message and marginalize the variable of the incoming message
 - * This is similar to a matrix multiplication
 - Messages that pass from right to left can be simplified similarly
- Let $\alpha(z_n) = \mu_{f_n \to z_n}(z_n)$ (left to right message) and $\beta(z_n) = \mu_{f_{n+1} \to z_n}(z_n)$ (right to left message)
 - $\alpha(z_n) = p(x_n|z_n) \sum_{z_{n-1}} \alpha(z_{n-1}) p(z_n|z_{n-1})$
 - * Obtained by substituting what we had above
 - * This is like computing the next state probability normally, but multiplying by the hint, $p(x_n|z_n)$, for each possible state
 - * Each possible value of state z_n is weighed by the hint

$$-\beta(z_n) = \sum_{z_{n+1}} \beta(z_{n+1}) p(x_{n+1}|z_{n+1}) p(z_{n+1}|z_n)$$

- * In this case we cannot move the hint outside the summation, since the hint is from the node we came from, z_{n+1} , which is the one we sum over
- $-\alpha(z_1) = p(z_1)p(x_1|z_1)$
- $-\beta(z_N)=1$
- Therefore the joint distribution when the messages meet is $p(z_n, \boldsymbol{x}) = \alpha(z_n)\beta(z_n)$

- Let
$$\gamma(z_n) = \frac{p(z_n, \boldsymbol{x})}{p(\boldsymbol{x})} = \frac{\alpha(z_n)\beta(z_n)}{p(\boldsymbol{x})} = p(z_n|\boldsymbol{x})$$

- This is the marginal of z_n given the observations \boldsymbol{x}

- This can also be a form of normalization, since $p(z_n, x)$ is going to have very small values due to the large number of observations
- If we condition on z_n , it disconnects the chain on its two sides
 - $-\alpha(z_n) = p(x_1, \dots, x_n, z_n)$
 - $-\beta(z_n) = p(x_{n+1}, \dots, x_N | z_n)$
 - $-\alpha(z_n)$ encapsulates all the information of the observations prior to z_n , and $\beta(z_n)$ encapsulates all the information provided by observations after z_n

Forward-Backward (Baum-Welch) Algorithm

- Both $\alpha(z_n)$ and $\beta(z_n)$ involve multidimensional distributions, so computing them deals with very small probabilities; this introduces round-off errors when working with numbers of normal magnitudes
- For numerical stability it's better to normalize α and β :

$$-\hat{\alpha}(z_n) = p(z_n|x_1, \dots, x_n) = \frac{\alpha(z_n)}{p(x_1, \dots, x_n)}$$

$$-\hat{\beta}(z_n) = \frac{p(x_{n+1}, \dots, x_N|z_n)}{p(x_{n+1}, \dots, x_N|x_1, \dots, x_n)} = \frac{\beta(z_n)}{p(x_{n+1}, \dots, x_N|x_1, \dots, x_n)}$$

$$-\text{Note } \hat{\alpha}(z_n)\hat{\beta}(z_n) = \frac{\alpha(z_n)\beta(z_n)}{(\prod_{m=1}^n c_m)\left(\prod_{m=n+1}^N c_m\right)} = \frac{\alpha(z_n)\beta(z_n)}{p(x_N)} = \gamma(z_n) = p(z_n|x)$$

- * This is why we define β as above, so it complements α
- We need the normalization $p(x_n)$

- Let
$$c_n = p(x_n | \boldsymbol{x}_{n-1}) = p(x_n | x_1, \dots, x_{n-1})$$

- Then
$$p(\mathbf{x}_n) = p(x_1)p(x_2|x_1)\dots p(x_n|x_1,\dots,x_{n-1}) = \prod_{m=1}^n c_m$$

• Substituting $\hat{\alpha}$ into the old recursive relation for α gives us the recursive relationship for $\hat{\alpha}$

$$-c_n \hat{\alpha}(z_n) = p(x_n|z_n) \sum_{z_{n-1}} \hat{\alpha}(z_{n-1}) p(z_n|z_{n-1})$$

• For
$$\beta$$
 we have $c_{n+1}\hat{\beta}(z_n) = \sum_{z_{n+1}} \hat{\beta}(z_{n+1}) p(x_{n+1}|z_{n+1}) p(z_{n+1}|z_n)$

• Using the fact that $\sum_{z} \hat{\alpha}(z_n) = 1$, we obtain an expression for c_n

$$- c_n = \sum_{z_n} \left(p(x_n | z_n) \sum_{z_{n-1}} \hat{\alpha}(z_{n-1}) p(z_n | z_{n-1}) \right)$$

- For each node n, we first calculate $\hat{\alpha}(z_n)$ for all values of z_n , and then find c_n through the summation; do this for all nodes up until z_N , and then go in the reverse direction to calculate $\hat{\beta}(z_n)$
 - We need to go in reverse for $\hat{\beta}$ since it requires c_{n+1} , which we can only get through the forward pass
 - This is called the forward-backward algorithm
- To compute $\hat{\alpha}(z_n)$: for state $z_n = k$, we do the following to find $\hat{\alpha}(z_n = k)$:
 - Use the previous values of $\hat{\alpha}(z_{n-1})$, multiply by the transition probabilities $p(z_n = k|z_{n-1} = j)$ for each previous state $z_{n-1} = j$ and sum
 - The sum is multiplied by $p(x_n|z_n=k)$, the hint

- After we compute this for each k, we find the normalization c_n , by summing over the values we computed for all k and taking the inverse
- Using c_n we find $\hat{\alpha}(z_n)$ by dividing each of the previous results by c_n

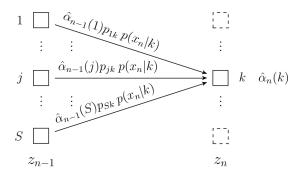


Figure 5: Calculation of $\hat{\alpha}(z_n)$.

- To compute $\hat{\beta}(z_n)$: for state $z_n = k$, do the following to find $\hat{\beta}(z_n = k)$:
 - Use the values of $\hat{\beta}(z_{n+1})$, multiply by transition probabilities $p(z_{n+1} = j | z_n = k)$ for each j, and then multiply by the hint $p(x_{n+1} | z_{n+1} = j)$ (note in this case the hint does not distribute), and sum
 - Use c_{n+1} , obtained from the forward pass for $\hat{\alpha}$, to normalize and find $\hat{\beta}(z_n = k)$

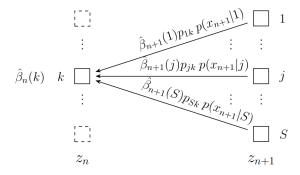


Figure 6: Calculation of $\hat{\beta}(z_n)$. Note the order of indices on the transition probabilities p should be reversed.

Example: Robot Position Estimation

- Consider a robot with position described by (x_n, y_n)
- At each time it takes an action a_n to stay put, or move up, down, left, or right according to some transition probability
 - The action depends on the previous action; if the robot was previously moving in some direction, it will continue along that same direction unless it decides to stop
- The robot lives in a rectangular grid; at the end, the transition probabilities are such that the robot never leaves the grid
- We have noisy observations of the robot's position, \hat{x}_n (but not its actions)
- Let $z_n = (x_n, y_n, a_n)$ where (x_n, y_n) is the position at time n and a_n is the previous action
 - The state is augmented by the previous action
- We have a lot of possible states, but since the actions are local, the transition probability $p(z_n|z_{n-1})$ will eliminate many prior states as impossible
 - Having the noisy observations broadens the set of possible state transitions

Viterbi Algorithm

• This algorithm is used to find the most likely sequence of hidden random variables given the observations

- We are now looking for $z^* = \operatorname{argmax} p(z, x)$
- We create the factor graph in the exact same way as before
- In this case, instead of summing to find marginals, we are only interested in the maximums; therefore we can take the log, since it is a monotonic function
 - We couldn't before because we needed to sum probabilities
- We now look for $\max_{x_1,...,x_N} \left(\log \frac{1}{Z} + \sum_{i=2}^N \log \psi(x_{i-1},x_i) \right)$ where Z is normalization
- Recall message passing for the max-sum algorithm
 - At each variable node, take sum (due to logs) $\mu_{x\to f}(x) = \sum_{k=1}^{L} \mu_{f_{l_k}\to x}(x)$
 - * At each leaf we initialize to $\log 1 = 0$
 - At each factor node, we find $\mu_{f \to x} \max_{x_{m_1}, \dots, x_{m_M}} \left(\log \psi_f(x, x_{m_1}, \dots, x_{m_M}) + \sum_{i=1}^M \mu_{x_{m_i} \to f}(x_{m_i}) \right)$
- For a hidden Markov model this simplifies:
 - $-\mu_{h\to z_1}(z_1) = \log p(z_1) + \log(p(x_1|z_1)) \equiv \omega_1(z_1)$
 - * This is initialization of the messages

 - $\mu_{z_n \to f_{n+1}}(z_n) = \mu_{f_n \to z_n}(z_n)$ * Just like the forward-backward algorithm, only a single factor feeds into each variable, so it's just passed along
 - $\mu_{f_{n+1} \to z_{n+1}}(z_{n+1}) = \max \left\{ \log f_{n+1}(z_n, z_{n+1}) + \mu_{z_n \to f_{n+1}}(z_n) \right\}$
 - * Take the maximum value of the message over all possible values for z_n
- Let $\omega_{n+1}(z_{n+1})$ be the function that records the max at z_n , computed for each possible value of z_{n+1}

$$-\omega_{n+1}(z_{n+1}) = \max_{z_n} \left\{ \log p(z_{n+1} \mid z_n) + \log p(x_{n+1} \mid z_{n+1}) + \omega_n(z_n) \right\}$$

$$= \log p(x_{n+1}|z_{n+1}) \max_{z_n} \big\{ \log p(z_{n+1} \mid z_n) + \omega_n(z_n) \big\}$$
 – This recursive relationship for ω_n is the core of the Viterbi algorithm

- At each step, we compute the best path and store it along with the state that was chosen that led to the best path; the probability is summed due to the logs
- To calculate $\omega_{n+1}(k)$:
 - Take $\omega_n(j)$, the transition probability $\log p(z_{n+1} = k | z_n = j)$ and hint $\log p(x_{n+1} | z_{n+1} = k)$ and add, for each state j at the previous time
 - Find the value of j that leads to the max; this is the value of $\omega_{n+1}(k)$
 - Keep track of which j led to the max $\omega_{n+1}(k)$, so we can backtrack later

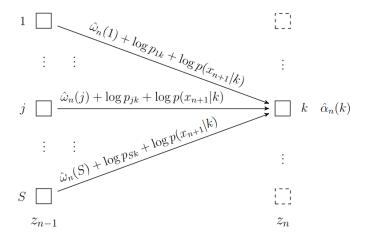


Figure 7: Illustration of the Viterbi algorithm.