
Lecture 2, Jan 12, 2024
Joint Random Variables

• A random variable is a function that assigns one or more numbers to the outcome of an experiment
– Random numbers can be multi-dimensional: X : s 7→ R2 ⇐⇒ X(s) = (X(s), Y (s))

• The probability mass function is denoted P [X = xi, Y = yi] = pX(xi, yi) for discrete random variables
– Probability of a set/event is the sum of the PMF over the events

• The probability density function is denoted P [x < X < x + dx, y < Y < y + dy] ≈ fX(x, y) dx dy for
continuous random variables

– Probability of a set/event is the integral of the PDF over the continuous region that defines the
event

– Note we denote PMFs by p, PDFs by f

• Marginal probabilities can be computed as pY (yj) =
∑

j

pX(xi, yj), pX(xi) =
∑

j

pX(xi, yj) (discrete)

– fX(x) =
� ∞

−∞
fX(x, y′) dy′, fY (y) =

� ∞

−∞
f(x′, y) dx′

– In isolation the marginals don’t have all the information that the joint PMF provides
• Conditional probabilities are given by pY |X(yj |xi) = pX(xi, yj)

pX(xi)
, fY |X(y|x) = fX(x, y)

fX(x)
– The discrete version follows directly from the definitions
– The continuous version requires a limiting procedure
– Rearranging gives the product rule: pX(xi, yj) = pY |X(yj |xi)pX(xi) = pX|Y (xi|yj)pY (yj) (same

with continuous version)

Expectation, Mean and Variance

• The expected value of a function Z = g(X, Y ) is E[Z] =
� ∞

−∞

� ∞

−∞
g(x′, y′)fX(x′, y′) dx′ dy′

– For a function dependent on only one of the variables, this is equivalent to integrating on the
marginal

• The mean is simply mX = E[X] =
� ∞

−∞
x′fX(x′) dx′

• The variance is defined as σ2
X = Var[X] = E[(X − E[X])2]

– This is a measure of spread
– Expanding this out gives σ2

X = E[X2] − (E[X])2

• E[g(Y )] =
� ∞

−∞

� ∞

−∞
g(y′)fY |X(y′|x′)fX(x′) dy dx

=
� ∞

−∞

� ∞

−∞
g(y′)fY |X(y′|x′) dyfX(x′) dx

=
� ∞

−∞
E[g(Y )|X = x]fX(x′) dx′

= E[E[g(Y )|X]]
– In other words we can find the expectation of g(Y ) assuming X is known, and then find the

expectation of that over X, to find the overall expectation of g(Y )
– Special case: if g(Y ) = Y then E[Y ] = E[E[Y |X]]
– Example: picking X from a uniform [0, 1], and then picking Y from a uniform [0, x]

* E[Y ] = E[E[Y |X]] = E

[
X

2

]
= E[X]

2 = 1
4

• The covariance of X and Y is defined as σXY = Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])]
– If X and Y tend to vary positively together, the covariance is positive; if one varies positively

while the other varies negatively,the covariance is negative; if there is no relation, the covariance is
zero

– Expanding gives E[XY ] − E[X]E[Y ] (E[XY ] is known as the correlation)
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– Normalizing gives the correlation coefficient ρXY = E

[(
X − mX

σx

) (
Y − mY

σY

)]
= Cov(X, Y )

σXσY

– X and Y are uncorrelated if ρXY = 0 ⇐⇒ Cov(X, Y ) = 0 (note uncorrelated does not always
imply independent)

– Note covariance is bilinear (i.e. linear in each argument)
• X, Y are independent if fX(x, y) = fX(x)fY (y) or pX(xi, yj) = pX(xi)pY (yj)

– Independence means E[g(X)h(Y )] = E[g(X)]E[h(Y )]
– This also means Cov(X, Y ) = 0 (i.e. independence implies uncorrelated)

– fX|Y (x|y) = fX(x)fY (y)
fY (y) = fX(x)

* The a posteriori distribution is the same as the a priori distribution
* i.e. knowing one does not give any information about the other
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