Lecture 2, Jan 12, 2024

Joint Random Variables

e A random variable is a function that assigns one or more numbers to the outcome of an experiment
— Random numbers can be multi-dimensional: X: s — R? <= X(s) = (X(s),Y(s))

o The probability mass function is denoted P[X = z;,Y = y;] = px (x4, y;) for discrete random variables
— Probability of a set/event is the sum of the PMF over the events

o The probability density function is denoted Plz < X <z +dz,y <Y <y +dy| = fx(z,y) dz dy for

continuous random variables
— Probability of a set/event is the integral of the PDF over the continuous region that defines the
event

— Note we denote PMFs by p, PDFs by f

o Marginal probabilities can be computed as py (y;) pr (xi,y5), px (23) pr (xi,y;) (discrete)
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— In isolation the marginals don’t have all the information that the joint PMF provides
x x
« Conditional probabilities are given by py|x (y;|z:) = M, Jyix(ylz) = M
px () fx(z)
— The discrete version follows directly from the definitions
— The continuous version requires a limiting procedure
— Rearranging gives the product rule: px (z:,y;) = py|x (y;|z:)px () = px|v (ily;)py (y;) (same
with continuous version)

Expectation, Mean and Variance

o The expected value of a function Z = g(X,Y) is E[Z / / (@, y) fx (2’ y")dx’ dy’

— For a function dependent on only one of the Varlables thls is equivalent to integrating on the

marginal
oo

o The mean is simply mx = E[X] = / x' fx(2')da’

o The variance is defined as 0% = Var[X] = E[(X — F[X])?]
— This is a measure of spread
- Expandlng this out gives 0% = F[X?] — (E[X])?
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— In other words we can find the expectation of g(Y) assuming X is known, and then find the
expectation of that over X, to find the overall expectation of g(Y")

— Special case: if g(Y) =Y then E[Y] = E[E[Y|X]]

— Example: picking X from a uniform [0, 1], and then picking Y from a uniform [0, z]
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* ElY]|=FE[EY|X]|=F [2} = % =1
o The covariance of X and Y is defined as oxy = Cov(X,Y) = E[(X — E[X])(Y — E[Y])]

— If X and Y tend to vary positively together, the covariance is positive; if one varies positively
while the other varies negatively,the covariance is negative; if there is no relation, the covariance is
zero

— Expanding gives F[XY]| — E[X|E[Y] (E[XY] is known as the correlation)
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— X and Y are uncorrelated if pxy =0 <= Cov(X,Y) = 0 (note uncorrelated does not always
imply independent)
— Note covariance is bilinear (i.e. linear in each argument)
+ X,Y are independent if fx(z,y) = fx(z)fy(y) or px (i, y;j) = px(2:)py (y;)
— Independence means E[g(X)h(Y)] = Elg(X)]E[h(Y)]
— This also means Cov(X,Y) = 0 (i.e. independence implies uncorrelated)

oy (aly) = W ~ Fx(@)

* The a posteriori distribution is the same as the a priori distribution
* i.e. knowing one does not give any information about the other

— Normalizing gives the correlation coefficient pxy = E (
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