
Lecture 19, Mar 25, 2024
Inference on Graphical Models

• Consider a Markov chain; we may want to perform inference tasks, such as finding the most likely state
at time n, or finding the most likely sequence until time n, etc

– All of these require us to find the marginal distribution, either over one variable or multiple
variables

• Suppose we have N variables and we want to find the marginal of one of the variables
– The brute force approach needs to sum over all the other variables, resulting in a summation with
SN−1 terms and so exponential complexity

– However this could be simplified drastically with assumptions about the graph
• Our summation goes over all the variables to marginalize over, but the summed terms may not all

depend on these variables
– This lets us factor out terms and simplify the computation drastically
– The factored sums can be computed, into functions over the variables in the expression that aren’t

summed over
– This results in messages
– We represent each of the messages as a vector, and the factors as matrices, so we can simply do a

vector matrix multiplication to perform the summation
– The messages start at each end and get passed towards the middle to the variable that we are

finding the marginal for; when we get both messages, we multiply them to get the final marginal
distribution

• Message passing algorithm: for a linear Markov model, messages are passed from either side inwards
– This results in a complexity of only NS2 instead of SN−1

– By letting the messages pass through the entire chain instead of stopping it at a node, we can get
the marginals for all nodes

– This is the sum-product algorithm
• To find the maximum likelihood sequence, we need more than just the marginals, due to dependence

between variables
• We want to find argmax

x

1
z
ψ12(x1,x2) . . . ψN−1,N (xN−1,xN )

• Consider finding the max of just two variables, g(x1,x2)
– The distribution can be represented in a table
– We first find the maximum value of each row, and then find the maximum of all the row maxima
– Now we go back to the row that the overall max came from and find the column that gave the max
– This is the sum-product algorithm

• When we have multiple variables, we can factor out terms just as we did in a summation, since the max
function also distributes

– This also involves message passing in the same way, completely analogous to the sum-product
algorithm

– This is the max-product algorithm
• In practice, we normally work with the log probabilities to avoid over/underflow

Factor Graphs

• In a factor graph, in addition to nodes for random variables, we also have nodes that are factors of the
joint distribution that explicitly state the relationships between nodes

– Noes are only connected directly to nodes of the other type (variable nodes are only connected to
factor nodes and vice versa)

– Instead of using edges connecting nodes to state the relationships between nodes, we use the factor
nodes to do this explicitly

* Each factor node is the keeper of a factor ψ
– This changes the graph to a star pattern instead
– This results in a bipartite graph (we can put all variables in one partition and all factors in the
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other, and there will be no connections within the two partitions)
• To convert an undirected graph to a factor graph, we associate a factor node with each maximal clique

– Links between variables in the maximal clique are replaced by links to the factor node
– Note that we don’t have to use maximal cliques; by using non-maximal cliques we can get alternative

factor graphs for the same undirected graph
* These other graphs will have more factors, which makes the factorization finer

– Therefore factor graphs are in general not unique

Figure 1: Conversion of an undirected graph to a factor graph by maximal cliques.

Figure 2: Alternative factor graphs for an undirected graph.

• We are particularly interested in factor graphs that are trees (between any pair of nodes, there is only
one path)

– An undirected graph that is a tree will always have a factor graph that is a tree
• For directed graphs, we replace each conditional probability with a factor node
• A directed graph is a tree if every node has only one parent; in a polytree, nodes can have multiple

parents, but there is still only a single path between nodes (ignoring directions)
– Directed trees and polytrees can both be converted into factor graphs that are trees

Figure 3: Conversion of a polytree directed graph to a factor graph (two variations).

• In a factor tree, we can also pass messages
– Starting at the lowest factor nodes, we sum over its child variables and pass the message to the

parent
– When the parent has multiple factors passing it messages, the messages are multiplied
– This is analogous to factoring out terms/moving sums
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– Since our graph is no longer linear, the way we can move the sums is more complicated and
depends on the factors

Figure 4: Message passing in a factor tree.

• Generally we see two types of activity: either at variable nodes or factor nodes
• At variable nodes, we have a product over all the factors that are coming in

– One or more factor nodes feed the variable x with their messages µflk→x(x)
* These messages are functions of the variable

– The output produced is a product, the message µx→f (x)
– For variable nodes that are leaves, we let its message µx→f (x) = 1 as initialization

• At factor nodes, we take the product of all incoming messages, and then multiply and marginalize over
the factor at the node (for all variables except the one that the resulting message will be passed to)

– One or more variables feed it with the messages µxmj →f
(xmj )

– For factor nodes that are leaves, the message will be a function of the next variable as initialization
• This algorithm lets us find all marginal PMFs if we pass messages both from the leaves to the root and

from the root to al leaves
• The result is exact for tree graphs, but if the graph has cycles, this is only an approximation
• For max-product, the variable nodes simply take the product as before, but the factor nodes take the

maximum over the local factor instead of marginalizing (summing) over it
– This goes all the way to the root, and then we trace back the maxima at each step to find the

maximum likelihood sequence
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