Lecture 18, Mar 22, 2024

Markov Random Fields (Undirected Graphs)

- Unlike Bayesian networks, these graphs are undirected, so we no longer have to worry about subtleties such as head-to-head nodes
- An edge does not necessarily indicate dependence, but rather related behaviour between nodes; conditional independence depends on path connectivity
- Factorization is done differently

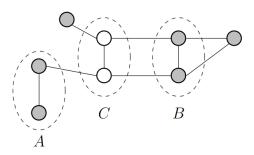


Figure 1: Example undirected graph.

- We want the conditional independence property: given disjoint sets of nodes A, B, and C, where C is observed
 - If all paths between A and B pass through C, then they are conditionally independent
 - If at least one path is not blocked, then conditional independence is not guaranteed
 - Alternatively we can remove all nodes in C and check for connectivity between the two sets
- How should we factor the probabilities so that we get the above properties?
- The Markov blanket in the case of Markov random fields is just the immediate neighbours of the node (no more descendants or co-parents)
- Consider x_i , x_j ; suppose that they are conditionally independent, then $p(x_i, x_j | x_{\{i,j\}}) = p(x_i | x_{\{i,j\}}) p(x_j | x_{\{i,j\}})$
 - This requires that there is no direct path between x_i and x_j and all other paths are blocked
 - $-x_i$ and x_j cannot be in the same factor
- A *clique* is a subset of nodes where all pairs are connected by a link (i.e. they're all direct neighbours)
 - A *maximal clique* is a subset of nodes where no additional node can be added while remaining a clique
 - Every maximal clique must form its own factor, since the nodes inside it cannot be separated by intermediate nodes, so they are not independent
- The joint distribution of all x is a product of the *potential function* on all the maximal cliques

$$p(\boldsymbol{x}) = \frac{1}{Z} \prod_{C} \psi_{C}(\boldsymbol{x}_{C}) \text{ where } Z \text{ is a normalization and } C \text{ are the maximal cliques}$$

$$* Z = \sum_{C} \prod_{C} \psi_{C}(\boldsymbol{x}_{C}) \text{ is the partition function}$$

- * We do this over maximal cliques because as per the discussion above, nodes in a maximal clique must all be in the same factor, because they are directly connected
- The potential functions ψ_C are all nonnegative, but they need not be conditional PDFs
- In this way we factorize the joint distribution
- The Hammerly-Clifford theorem states that we can always construct these distributions this way over maximal cliques
- Since potentials are exponential, we express $\psi_C(\boldsymbol{x}_C) = e^{-E(\boldsymbol{x}_C)}$
 - $E(\boldsymbol{x}_{C})$ is the energy

• Therefore the joint distribution is
$$p(\boldsymbol{x}) = \frac{1}{Z} \prod_{C} e^{-E(\boldsymbol{x}_{C})} = \frac{1}{Z} \exp\left(-\sum_{C} E(\boldsymbol{x}_{C})\right)$$

– Note that the energy function for each clique is possibly different

– To maximize the joint probability, we need to minimize the total energy $\sum E(\boldsymbol{x}_C)$

- Example: suppose we scan a monochrome image (each pixel $x_i \in \{1, -1\}$), and we get $y_i \in \{1, -1\}$; the process introduces some noise which possibly flips the pixels, so we would like to denoise the image by recovering x_i from y_i
 - We assume that for the most part, $x_i = y_i$ and noise occurs relatively rarely
 - The pixels are scanned in a rectangular grid; we assume that adjacent pixels tend to have the same sign
 - * The maximal cliques in the image are adjacent pixels, and each x_i with its corresponding y_i * Each pair will have its own potential function
 - Consider $\psi(x_i, y_i) = e^{-\eta x_i y_i}$ and $\psi(x_i, x_j) = e^{-\beta x_i x_j}$
 - * This is defined so that if x_i, y_i (or x_i, x_j) have the same value/sign, the potential is lower than the case of the pixels having different signs
 - * The more frequent case of the pixels being the same sign has a lower potential
 - * η and β are relative weightings
 - Let $\psi(x_i) = e^{-hx_i}$, which biases the pixels (if we know that there are more +1s than -1s or otherwise)

$$-E(\boldsymbol{x},\boldsymbol{y}) = h\sum_{i} x_{i} - \beta \sum_{i,j} x_{i}x_{j} - \eta \sum_{i} x_{i}y_{i} \text{ and } p(\boldsymbol{x},\boldsymbol{y}) = \frac{1}{Z}e^{-E(\boldsymbol{x},\boldsymbol{y})}$$

- Now given \boldsymbol{y} , we wish to find \boldsymbol{x} that minimizes the energy $E(\boldsymbol{x}, \boldsymbol{y})$
- In this case, we do it by brute force:
 - * Set $x_i = y_i$ for all *i* initially
 - * Select a pixel x_i to change to the opposite polarity, and keep the change if the energy is reduced
 - * Continue until a local minimum or maximum iterations is reached

Directed to Undirected Graphs

- Suppose we have a simple Markov chain with each X_i pointing to X_{i+1}
 - This factors as $p(\boldsymbol{x}) = p(x_1)p(x_2|x_1)\dots p(x_n|x_{n-1})$
 - Each pair of two nodes except the first is a clique
- If we have a node that has multiple parents, we "marry" the parents (*moralizing*) by connecting them, and all the parents and the child gives a maximal clique
- We can always convert a directed graph to an undirected graph this way
- However, it's not always possible to convert an undirected graph to a directed graph (we can't find a directed graph that satisfies all the conditional independence properties of the original graph)
 - If the undirected graph is a tree then we can do this, but if it has cycles then it's not possible

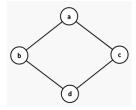


Figure 2: A case where an undirected graph cannot be converted into directed.