
Lecture 18, Mar 22, 2024
Markov Random Fields (Undirected Graphs)

• Unlike Bayesian networks, these graphs are undirected, so we no longer have to worry about subtleties
such as head-to-head nodes

• An edge does not necessarily indicate dependence, but rather related behaviour between nodes; condi-
tional independence depends on path connectivity

• Factorization is done differently

Figure 1: Example undirected graph.

• We want the conditional independence property: given disjoint sets of nodes A, B, and C, where C is
observed

– If all paths between A and B pass through C, then they are conditionally independent
– If at least one path is not blocked, then conditional independence is not guaranteed
– Alternatively we can remove all nodes in C and check for connectivity between the two sets

• How should we factor the probabilities so that we get the above properties?
• The Markov blanket in the case of Markov random fields is just the immediate neighbours of the node

(no more descendants or co-parents)
• Consider xi, xj ; suppose that they are conditionally independent, then p(xi,xj |x\{ i,j }) =
p(xi|x\{ i,j })p(xj |x\{ i,j })

– This requires that there is no direct path between xi and xj and all other paths are blocked
– xi and xj cannot be in the same factor

• A clique is a subset of nodes where all pairs are connected by a link (i.e. they’re all direct neighbours)
– A maximal clique is a subset of nodes where no additional node can be added while remaining a

clique
– Every maximal clique must form its own factor, since the nodes inside it cannot be separated by

intermediate nodes, so they are not independent
• The joint distribution of all x is a product of the potential function on all the maximal cliques

– p(x) = 1
Z

∏
C

ψC(xC) where Z is a normalization and C are the maximal cliques

* Z =
∑

x

∏
C

ψC(xC) is the partition function

* We do this over maximal cliques because as per the discussion above, nodes in a maximal
clique must all be in the same factor, because they are directly connected

– The potential functions ψC are all nonnegative, but they need not be conditional PDFs
– In this way we factorize the joint distribution

• The Hammerly-Clifford theorem states that we can always construct these distributions this way over
maximal cliques

• Since potentials are exponential, we express ψC(xC) = e−E(xC )

– E(xC) is the energy

• Therefore the joint distribution is p(x) = 1
Z

∏
C

e−E(xC) = 1
Z

exp
(

−
∑

C

E(xC)
)

– Note that the energy function for each clique is possibly different
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– To maximize the joint probability, we need to minimize the total energy
∑

C

E(xC)

• Example: suppose we scan a monochrome image (each pixel xi ∈ { 1, −1 }), and we get yi ∈ { 1, −1 };
the process introduces some noise which possibly flips the pixels, so we would like to denoise the image
by recovering xi from yi

– We assume that for the most part, xi = yi and noise occurs relatively rarely
– The pixels are scanned in a rectangular grid; we assume that adjacent pixels tend to have the

same sign
* The maximal cliques in the image are adjacent pixels, and each xi with its corresponding yi

* Each pair will have its own potential function
– Consider ψ(xi, yi) = e−ηxiyi and ψ(xi,xj) = e−βxixj

* This is defined so that if xi, yi (or xi,xj) have the same value/sign, the potential is lower than
the case of the pixels having different signs

* The more frequent case of the pixels being the same sign has a lower potential
* η and β are relative weightings

– Let ψ(xi) = e−hxi , which biases the pixels (if we know that there are more +1s than -1s or
otherwise)

– E(x, y) = h
∑

i

xi − β
∑
i,j

xixj − η
∑

i

xiyi and p(x, y) = 1
Z
e−E(x,y)

– Now given y, we wish to find x that minimizes the energy E(x, y)
– In this case, we do it by brute force:

* Set xi = yi for all i initially
* Select a pixel xi to change to the opposite polarity, and keep the change if the energy is

reduced
* Continue until a local minimum or maximum iterations is reached

Directed to Undirected Graphs

• Suppose we have a simple Markov chain with each Xi pointing to Xi+1
– This factors as p(x) = p(x1)p(x2|x1) . . . p(xn|xn−1)
– Each pair of two nodes except the first is a clique

• If we have a node that has multiple parents, we “marry” the parents (moralizing) by connecting them,
and all the parents and the child gives a maximal clique

• We can always convert a directed graph to an undirected graph this way
• However, it’s not always possible to convert an undirected graph to a directed graph (we can’t find a

directed graph that satisfies all the conditional independence properties of the original graph)
– If the undirected graph is a tree then we can do this, but if it has cycles then it’s not possible

Figure 2: A case where an undirected graph cannot be converted into directed.
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