Lecture 17, Mar 18, 2024

Bayesian Networks

o Given Xq,...,X,, whereeach X; € {1,2,...,5}, then fully specifying P[X7, ..., X,,] requires specifying
S™ — 1 values, which is very expensive
e However, we can reduce this if not all the variables depend on each other
— e.g. if X, is Markov then we only need to specify the transition probability matrix and initial
PMF, which is only S + 5% — 1 values
e We model the dependence relationship between variables as a graph, where the nodes are random
variables and a directed edge from X to Y means Y depends on X; these are known as Bayesian
networks
— e.g. for a Markov chain, the graph is just a long chain, since each variable only depends on the
previous one
— We assume that the inter-dependencies among RVs can be factorized into the form p(y|pa{y}),
where pa{y} denotes all parents of y
— Note an edge from X — Y does not mean X does not depend on Y, but we specify the conditional
probabilities as P[Y|X] instead of P[X]Y]
— This can be used to describe causal relationships (but causality is not necessary in a graph)
e These graphs can have complex relationships that are not necessarily linear like a Markov chain, so we
can no longer just specify state transition matrices
— In general these are DAGs
— The more parents a node has, the more information we need to fully specify its conditional
probability, since it depends on more things
* For a node that depends on k other nodes, we need to specify S* values; this is often much
less than S™
* The time/space complexity of storing a Bayesian network is therefore related to the node with
the most connections
e We are interested in the conditional independence between RVs in the network — given some set of
variables, are two variables conditionally independent?
— e.g. in a Markov chain, given the present state, all future states are independent of all past states
— Recall that conditional independence of a and b given ¢ means p(alb, ¢) = p(alc) < p(a,b|c) =
p(alc)p(blc)
o Consider p(a, blc) = p(alb, c)p(blc) = p(a|c)p(b|c); graphically this corresponds to ¢ pointing to a and b,
with no edge between a and b
— In this configuration c¢ is known as a tail-to-tail node
— Without observing ¢, a and b are dependent; if ¢ is given, then they are independent
— We can think of ¢ as a “gate” — when it’s nonblocking/not observed, we have dependence between
a and b; but when it is observed, it “blocks” the dependence between a and b

Figure 1: Tail-to-tail configuration.

e Consider another configuration, where a points to ¢ points to b
— Without ¢, a and b are dependent: p(a,b) = Zp(a7 b,c') = p(a) Zp(b|c')p(c’\a) = p(a)p(bla)
C b C b
— If we observe ¢, a and b are independent: p(a,b|c) = p(a)p(c(|a))p( [©) = p(am()p)( ) = p(alc)p(b|c)
p(c p(c




— Having ¢ again blocks the dependence between a and b
— This is known as head-to-tail configuration

Figure 2: Head-to-tail configuration.

e Now consider a pointing to ¢ and b pointing to ¢
— Now without ¢, @ and b are independent since p(a, b) = Zp(a)p(b)p(da, b) = p(a)p(b) Zp(c|a7 b) =

c!

p(a)p(b)
b b
— However, once c is observed, a and b are no longer independent since p(a, b|c) = p(a)p(gp)(dm) #
p(c
p(a)p(b)
— This is the opposite of the two previous cases; not having ¢ blocks the dependence
— This is a head-to-head configuration
Figure 3: Head-to-head configuration.
o For n random variables, p(z1,...,zn) = p(@n|T1, . s Tne1)P(Xn-1]21, ..., Tn2)...p(x2]|z1)p(21)

— In this form, the relation holds for all random variables; to simplify, we need to make assumptions
about independence, i.e. removing edges so that the graph is more sparse
n

 If we have a Bayesian network then we can show p(z1,...,z,) = Hp(aci|pa{xi})

— The joint probability distribution is the product of the PMFl 0% each variable given its parents
e Let A, B, C be disjoint sets of nodes in a DAG; a path from A to B is blocked with respect to C if the
path passes through a node in C' that is not head-to-head, or it passes through a head-to-head node for
which neither the node nor its descendants are in C
— If every path from A to B is blocked, then A is D-separated (directed separated)
— If A and B are D-separated, then all nodes in A are independent of all nodes in B given all nodes
in C
e Example: consider the network in the figure below
— Are a and b independent given c?
* The path from a passes through e (head-to-head) and f (tail-to-tail)
* e is head-to-head, and its descendant c is given; f is tail-to-tail but it is not given
* Therefore a and b are not independent
— Are a and b independent given f?
* f is tail-to-tail and it is given; e is head-to-head and neither it nor its descendants are given
* Therefore a and b are independent

o For x1,...,2,, consider z; given all others z;



Figure 4: D-separation.

Figure 5: Example Bayesian network.
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— Any factor in the denominator that does not depend on x; can be taken out of the summation,
which cancels a corresponding term in the numerator
— The terms that remain are p(x;|pa{x;}), and all (direct) children of x;, and co-parents of these
descendants
— These terms are known as the Markov blanket and separates x; from the rest of the nodes

Figure 6: Illustration of the Markov blanket.
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