
Lecture 17, Mar 18, 2024
Bayesian Networks

• Given X1, . . . , Xn where each Xi ∈ { 1, 2, . . . , S }, then fully specifying P [X1, . . . , Xn] requires specifying
Sn − 1 values, which is very expensive

• However, we can reduce this if not all the variables depend on each other
– e.g. if Xn is Markov then we only need to specify the transition probability matrix and initial

PMF, which is only S + S2 − 1 values
• We model the dependence relationship between variables as a graph, where the nodes are random

variables and a directed edge from X to Y means Y depends on X; these are known as Bayesian
networks

– e.g. for a Markov chain, the graph is just a long chain, since each variable only depends on the
previous one

– We assume that the inter-dependencies among RVs can be factorized into the form p(y|pa{y}),
where pa{y} denotes all parents of y

– Note an edge from X → Y does not mean X does not depend on Y , but we specify the conditional
probabilities as P [Y |X] instead of P [X|Y ]

– This can be used to describe causal relationships (but causality is not necessary in a graph)
• These graphs can have complex relationships that are not necessarily linear like a Markov chain, so we

can no longer just specify state transition matrices
– In general these are DAGs
– The more parents a node has, the more information we need to fully specify its conditional

probability, since it depends on more things
* For a node that depends on k other nodes, we need to specify Sk values; this is often much

less than Sn

* The time/space complexity of storing a Bayesian network is therefore related to the node with
the most connections

• We are interested in the conditional independence between RVs in the network – given some set of
variables, are two variables conditionally independent?

– e.g. in a Markov chain, given the present state, all future states are independent of all past states
– Recall that conditional independence of a and b given c means p(a|b, c) = p(a|c) ⇐⇒ p(a, b|c) =

p(a|c)p(b|c)
• Consider p(a, b|c) = p(a|b, c)p(b|c) = p(a|c)p(b|c); graphically this corresponds to c pointing to a and b,

with no edge between a and b
– In this configuration c is known as a tail-to-tail node
– Without observing c, a and b are dependent; if c is given, then they are independent
– We can think of c as a “gate” – when it’s nonblocking/not observed, we have dependence between

a and b; but when it is observed, it “blocks” the dependence between a and b

Figure 1: Tail-to-tail configuration.

• Consider another configuration, where a points to c points to b

– Without c, a and b are dependent: p(a, b) =
∑

c′

p(a, b, c′) = p(a)
∑

c′

p(b|c′)p(c′|a) = p(a)p(b|a)

– If we observe c, a and b are independent: p(a, b|c) = p(a)p(c|a)p(b|c)
p(c) = p(a, c)p(b|c)

p(c) = p(a|c)p(b|c)
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– Having c again blocks the dependence between a and b
– This is known as head-to-tail configuration

Figure 2: Head-to-tail configuration.

• Now consider a pointing to c and b pointing to c

– Now without c, a and b are independent since p(a, b) =
∑

c′

p(a)p(b)p(c|a, b) = p(a)p(b)
∑

c′

p(c|a, b) =

p(a)p(b)

– However, once c is observed, a and b are no longer independent since p(a, b|c) = p(a)p(b)p(c|a, b)
p(c) ̸=

p(a)p(b)
– This is the opposite of the two previous cases; not having c blocks the dependence
– This is a head-to-head configuration

Figure 3: Head-to-head configuration.

• For n random variables, p(x1, . . . , xn) = p(xn|x1, . . . , xn−1)p(xn−1|x1, . . . , xn−2) . . . p(x2|x1)p(x1)
– In this form, the relation holds for all random variables; to simplify, we need to make assumptions

about independence, i.e. removing edges so that the graph is more sparse

• If we have a Bayesian network then we can show p(x1, . . . , xn) =
n∏

i=1
p(xi|pa{xi})

– The joint probability distribution is the product of the PMF of each variable given its parents
• Let A, B, C be disjoint sets of nodes in a DAG; a path from A to B is blocked with respect to C if the

path passes through a node in C that is not head-to-head, or it passes through a head-to-head node for
which neither the node nor its descendants are in C

– If every path from A to B is blocked, then A is D-separated (directed separated)
– If A and B are D-separated, then all nodes in A are independent of all nodes in B given all nodes

in C

• Example: consider the network in the figure below
– Are a and b independent given c?

* The path from a passes through e (head-to-head) and f (tail-to-tail)
* e is head-to-head, and its descendant c is given; f is tail-to-tail but it is not given
* Therefore a and b are not independent

– Are a and b independent given f?
* f is tail-to-tail and it is given; e is head-to-head and neither it nor its descendants are given
* Therefore a and b are independent

• For x1, . . . , xn, consider xi given all others xj
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Figure 4: D-separation.

Figure 5: Example Bayesian network.
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– p(xi|xj ̸=i) = p(x1, . . . , xn)∑
xi

p(x1, . . . , xn) =
∏

k p(xk|pa{xk})∑
xi

∏
k′ p(x′

k|pa{x′
k})

– Any factor in the denominator that does not depend on xi can be taken out of the summation,
which cancels a corresponding term in the numerator

– The terms that remain are p(xi|pa{xi}), and all (direct) children of xi, and co-parents of these
descendants

– These terms are known as the Markov blanket and separates xi from the rest of the nodes

Figure 6: Illustration of the Markov blanket.
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