
Lecture 15, Mar 11, 2024
Discrete-Time Markov Chains

• A Markov chain is a discrete-valued random sequence Xn where the future is of the process given the
present is independent of the past, i.e. P [Xn+1|X1, . . . , Xn] = P [Xn+1|Xn]

– The present Xn is known as the state
• Example: sum process Sn = X1 + · · · + Xn = Sn−1 + Xn where Xi are IID, S0 = 0

– P [Sn+1 = sn+1|Sn = sn, . . . , S1 = s1] = P [Xn = sn+1 − sn] = P [Sn+1 = sn+1|Sn = sn]
• P [X3, X2, X1] = P [X3|X2]P [X2|X1]P [X1] due to the Markov property

– The latter is a lot easier to store since we don’t have to go over all possible comminations of the 3
variables

– P [X3|X2] and P [X2|X1] are transition probabilities
– P [X1] is the initial probability
– The joint PMF of the values is the product of the initial probability and all intermediate transition

probabilities
• These transition probabilities could be time-dependent, but often they are constant, in which case the

Markov chain has homogeneous transition probabilities
– We only need to store a single version of the transition probability matrix

• Xn is completely specified by pi(0) and the transition probability matrix, where the entry ij denotes the
probability of transitioning to state j while in state i

– Each row sums up to 1 since it s a PMF
– We can also use a state transition diagram to visualize this

• Example: speech activity using a Markov model; if packet n was silent, then the probability of silence
in the next packet is 1 − α and probability of speech activity is α

– Transition matrix: P =
[
1 − α α

β 1 − β

]

Figure 1: State transition diagram for example.

• The transition probability matrix after n steps, P (n), is the original single-step transition matrix raised
to the power n; pij(n) denotes the probability of transition for n steps

– P (n) = P (n − 1)P = P n

– Suppose we start with some initial state PMF p(0), then after n steps the new distribution will be
p(n) = p(0)P n

– To find a closed-form expression we can diagonalize P
• Some Markov chains will have lim

n→∞
P (n) exist; this will give the asymptotic or steady-state PMF

• Instead of finding an expression for P n, we can find the steady-state PMF more directly, assuming one
exists

– Let the steady-state PMF be π = (π1, . . . , πn) and so pij(n) = πj

– To find the steady-state PMF we solve π = πP such that
∑

i

πi = 1

* Since π is a PMF, the first equation only gives n − 1 independent equations
* i.e. when we have this PMF, it remains unchanged by the Markov chain

– These together are known as the global balance equations

Recurrence Relations in Markov Chains

• When does a Markov chain have steady-state probabilities?
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• We can break states into separate classes, where each one is of a different type
– State j is accessible from i if there is a sequence of transitions from i to j with nonzero probability
– States i and j communicate if they are accessible from each other (i.e. we can go from i to j and

back); this is denoted i ↔ j
* A state always communicates with itself by definition (even if there are no self edges)
* i ↔ j, j ↔ k =⇒ i ↔ k

– States that communicate with each other are in the same class
* States in the same class share the same fate – they have the same limiting behaviour

– Classes are always disjoint (i.e. one state cannot be in two different classes; in that case the two
classes would communicate with each other so they would be the same)

* However, states in different classes aren’t necessarily independent, since we can still have
one-way accessible connections

• The states of a Markov chain consists of one or more disjoint classes; if it has a single class, it is
irreducible

– Intuitively this means that we can go from one state to any other state
• A state is periodic with period d if it can only re-occur at times that are multiples of d, i.e. pii(n) = 0 if

n is not a multiple of d
– If the Markov chain is periodic, it’s similar to having multiple chains
– Let τ(x) be all the possible times that we can visit x (starting from x at time 0); the period of x

is the GCD of τ(x) (same across an entire class)
– If all states/classes have period 1, the chain is aperiodic

• A Markov chain that is irreducible and aperiodic will converge to a stationary distribution (we see this
later)

Figure 2: State transition diagram for a Markov chain with 3 classes: { 0 } , { 1, 2 } , { 3 }. This is aperiodic.

Figure 3: State transition diagram for a Markov chain with a single class. This is periodic with period 2.

• A state i is recurrent if the process returns to the state with probability 1, or transient if the probability
is less than 1

– For any recurrent state, if we leave it, we know eventually we will come back
– Whenever we come back we will go through the exact same cycle again
– For a transient state, when we leave it, it’s possible that we won’t reach this state again
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• Recurrence/transience is a class property; if a state is recurrent then all states in its class will also be
recurrent

• To find if a state is recurrent, we sum the probability of returning to the state after all possible number
of steps

– State i is recurrent iff
∞∑

n=1
pii(n) = ∞

– State i is transient iff
∞∑

n=1
pii(n) < ∞

– e.g. if p00(n) =
(

1
2

)n

, then the sum converges to 2 so it is finite and the state is transient

Figure 4: Binomial counting process state transition diagram. Each state is its own class and every class/state
is transient.

Figure 5: Random walk process state transition diagram. All states are in the same class. This is also
periodic.
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