
Lecture 14, Mar 8, 2024
Logistic Regression

• Try to estimate P [Y = i|x, w] where y ∈ C = { 1, 2, . . . , c } are classes, x is a feature, and w are linear
model weights

• Example: binary hypothesis (c = 2) with Bernoulli probabilities

– Then p(y = 1|x) = p(x|y = 1)p(y = 1)
p(x|y = 1)p(y = 1) + p(x|y = 0)p(y = 0) = 1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

– We can write this as 1
1 + e−α

where α = log p(x|y = 0)p(y = 0)
p(x|y = 1)p(y = 1)

• σ(α) = 1
1 + e−α

is the sigmoid function, which maps R → (0, 1) which is useful for probabilities

– Has an S shape with value of 1
2 at 0

– Note σ(−α) = 1 − σ(α) and α = log σ(α)
1 − σ(α)

– dσ

dα
= σ(α)(1 − σ(α))

– We can classify ŷ = 1 if σ(α) >
1
2 or ŷ = 0 otherwise

• Our model is then p̂(y = 1|x) = 1
1 + e−wT x

= σ(wT x), where we try to find the best weights w

• Compared to Gaussian discriminant analysis, which has 2D for means and D(D + 1)/2 for covariances
and priors, we only have D parameters and a lot less computation overall

• Consider a Bernoulli trial with θ = P [y = 1], so P [y] = θy(1 − θ)1−y

– Let θ = P [y = 1|x, w] = σ(wT x)

– For n trials, the NLL is − log
n∏

i=1
P [yi|xi, w] = −

n∑
i=1

log(θy
i (1 − θi)1−yi)) = −

n∑
i=1

yi log θi + (1 −

yi) log(1 − θi) where θi = σ(wT xi) = σi

– This is the cross-entropy loss function

– d
dw

NLL = −
n∑

i=1

(
yi

1
θi

θ′
i + (1 − y0) 1

1 − θi
(−θ′

i)
)

= −
n∑

i=1

(
yi

θ′
i

θi
− (1 − y0) θ′

i

1 − θi

)
= 0

– θ′
i = σi(1 − σi)

d
dwj

wT xi = σi(1 − σi)xij

– θ′
i

θi
= (1 − σi)xij =⇒ θ′

i

1 − θ′
i

= σixij

– Therefore d
dw

NLL =
n∑

i=1
(yi − σi)xij = 0

* This can be interpret as the error multiplied by the observation
– No closed-form solution; we can use methods such as gradient descent

* The gradient vector is
n∑

i=1
(yi − σi)xi

• Just like in linear regression, we’re not restricted to just a single basis; we can change to e.g. a polynomial
basis

– Change of basis can make the space more linearly separable
– Sometimes the problem is unsolvable as-is due to the data not being linearly separable

• For multiple classes, p(ck|x, w) = eαk∑
i e−αi

where αk = wT
k x

– This is a softmax
– This reduces to the same sigmoid function if we only have 2 classes

• We can also replace the sigmoid with tanh (and rescale to between 0 and 1)
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