Lecture 14, Mar 8, 2024

Logistic Regression

- Try to estimate $P[Y = i | \boldsymbol{x}, \boldsymbol{w}]$ where $\boldsymbol{y} \in C = \{1, 2, \dots, c\}$ are classes, \boldsymbol{x} is a feature, and \boldsymbol{w} are linear model weights
- Example: binary hypothesis (c = 2) with Bernoulli probabilities $\begin{array}{l} - \text{ Then } p(y=1|x) = \frac{p(x|y=1)p(y=1)}{p(x|y=1)p(y=1) + p(x|y=0)p(y=0)} = \frac{1}{1 + \frac{p(x|y=0)p(y=0)}{p(x|y=1)p(y=1)}} \\ - \text{ We can write this as } \frac{1}{1+e^{-\alpha}} \text{ where } \alpha = \log \frac{p(x|y=0)p(y=0)}{p(x|y=1)p(y=1)} \end{array}$
- $\sigma(\alpha) = \frac{1}{1 + e^{-\alpha}}$ is the sigmoid function, which maps $\mathbb{R} \to (0, 1)$ which is useful for probabilities
 - Has an S shape with value of $\frac{1}{2}$ at 0
 - Note $\sigma(-\alpha) = 1 \sigma(\alpha)$ and $\alpha = \log \frac{\sigma(\alpha)}{1 \sigma(\alpha)}$
 - $\frac{\mathrm{d}\sigma}{\mathrm{d}\alpha} = \sigma(\alpha)(1 \sigma(\alpha))$
- We can classify $\hat{y} = 1$ if $\sigma(\alpha) > \frac{1}{2}$ or $\hat{y} = 0$ otherwise Our model is then $\hat{p}(y = 1 | \boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{w}^T \boldsymbol{x}}} = \sigma(\boldsymbol{w}^T \boldsymbol{x})$, where we try to find the best weights \boldsymbol{w}
- Compared to Gaussian discriminant analysis, which has 2D for means and D(D+1)/2 for covariances and priors, we only have D parameters and a lot less computation overall
- Consider a Bernoulli trial with $\theta = P[y=1]$, so $P[y] = \theta^y (1-\theta)^{1-y}$ - Let $\theta = P[y = 1 | \boldsymbol{x}, \boldsymbol{w}] = \sigma(\boldsymbol{w}^T \boldsymbol{x})$

- For *n* trials, the NLL is
$$-\log \prod_{i=1}^{n} P[y_i | \boldsymbol{x}_i, \boldsymbol{w}] = -\sum_{i=1}^{n} \log(\theta_i^y (1 - \theta_i)^{1 - y_i})) = -\sum_{i=1}^{n} y_i \log \theta_i + (1 - y_i) \log(1 - \theta_i)$$
 where $\theta_i = \sigma(\boldsymbol{w}^T \boldsymbol{x}_i) = \sigma_i$
- This is the cross-entropy loss function

$$-\frac{\mathrm{d}}{\mathrm{d}w}\mathrm{NLL} = -\sum_{i=1}^{n} \left(y_i \frac{1}{\theta_i} \theta_i' + (1-y_0) \frac{1}{1-\theta_i} (-\theta_i') \right) = -\sum_{i=1}^{n} \left(y_i \frac{\theta_i'}{\theta_i} - (1-y_0) \frac{\theta_i'}{1-\theta_i} \right) = 0$$
$$-\theta_i' = \sigma_i (1-\sigma_i) \frac{\mathrm{d}}{\mathrm{d}w_j} w^T x_i = \sigma_i (1-\sigma_i) x_{ij}$$
$$-\frac{\theta_i'}{\theta_i} = (1-\sigma_i) x_{ij} \implies \frac{\theta_i'}{1-\theta_i'} = \sigma_i x_{ij}$$

- Therefore $\frac{\mathrm{d}}{\mathrm{d}w}$ NLL = $\sum_{i=1} (y_i \sigma_i) x_{ij} = 0$
 - * This can be interpret as the error multiplied by the observation
- No closed-form solution; we can use methods such as gradient descent
 - * The gradient vector is $\sum_{i=1}^{n} (y_i \sigma_i) \boldsymbol{x}_i$
- Just like in linear regression, we're not restricted to just a single basis; we can change to e.g. a polynomial basis
 - Change of basis can make the space more linearly separable
 - Sometimes the problem is unsolvable as-is due to the data not being linearly separable
- For multiple classes, $p(c_k | \boldsymbol{x}, \boldsymbol{w}) = \frac{e^{\alpha_k}}{\sum_i e^{-\alpha_i}}$ where $\alpha_k = \boldsymbol{w}_k^T \boldsymbol{x}$
 - This is a softmax
 - This reduces to the same sigmoid function if we only have 2 classes
- We can also replace the sigmoid with tanh (and rescale to between 0 and 1)