Lecture 13, Feb 26, 2024

Linear Regression

« Consider a linear model Y = w? X + Z where we have n noisy measurements y; from n inputs x;
— Assume Z is some IID Gaussian random noise

— Given these measurements, our goal is to find the best set of weights w’ = [wl e wD]
— Each weight w; corresponds to the jth coefficient of «, which has dimension D
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— Where the error vector is e(w) = .. =y— | |w
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— This is now a least squares regression problem
]
— Let X = | : | then we have argmin(y — Xw)” (y — Xw)
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— Expand: inXXw —wXTy+ §yTy (note a factor of 5 Was added)

— Derivative: XTXw — XTy=0 = X'Xw=XTy
— Therefore dyg, = (XTX) ' Xy
e Another way to write this is XT(Xw —vy) = 0, meaning we can interpret this as making the error
vector orthogonal to all the input data
— This is the normal equation
o XTX is the scatter matriz
— This is an estimate of the covariance/correlation matrix of the data
o Regression can be performed in any general vector space, so our model can be nonlinear in x (but still
linear in w)
— In general given any basis function ¢(z;) we can try to fit y; = w? ¢(ax;) + 2;
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~ Let X = : then g, = (X7 X) 7' Xy
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— e.g. we can work in the vector space of polynomials to perform polynomial regression, or the space
of sinusoids for a Fourier series
* For d-degree polynomial regression we’d have d)T(xi) = [1 x; 3322 . :r:f]
— Example: measuring the height of a cannonball h; vs. time ¢; for i =1,...,n
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* Use the model h; = wit; + wgtl2 +2z; = wlx; + z; where x; = [ti]
7



Bayesian Regression — Regularization
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Figure 1: Polynomial regression for different degrees. Green is the underlying function we’re trying to
approximate.

e If we make the model too complex, i.e. too high of a dimension for ¢, we will get overfitting
o Typically when the model overfits, we get very large weights that are not physically realistic for our
system
— To keep the weights down, we can use regularization
— Here we show a way to derive the same result by instead assuming a prior on w
« Assume that each weight has a prior w; ~ N(0,7%); now can find the MAP estimate
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The first term is the same least squares term as before, but now we have an additional term that
penalizes the norm of w, effectively keeping the weights small
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* The error can again be written as e’ (w)e(w)

— Using the same derivation as before, wyap = (X7 X)X 7T [g} =(XTX +21) ' XTy

— Notice that this result is almost the same as the MLE solution, except with the addition of A1
— This is known as ridge regression



We can also solve this by writing it as a Gaussian system
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* Notice that X7 X + 0—21 is related to the covariance
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* As we collect more data the added term becomes negligible
* XT X becomes bigger so the covariance shrinks
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