
Lecture 13, Feb 26, 2024
Linear Regression

• Consider a linear model Y = wT X + Z where we have n noisy measurements yi from n inputs xi

– Assume Z is some IID Gaussian random noise
– Given these measurements, our goal is to find the best set of weights wT =

[
w1 . . . wD

]
– Each weight wj corresponds to the jth coefficient of x, which has dimension D

• Form the design matrix

xT
1 y1
...

...
xT

n yn


• Consider the MLE ŵML = argmax

w∈RD

log p((x1, y1), . . . , (xn, yn)|w)

= argmax
w∈RD

log
n∏

i=1
p(xi, yi|w)

= argmax
w∈RD

n∑
i=1

log
(

1√
2πσ

e− 1
2σ2 (yi−wT xi)2

)

= argmax
w∈RD

−
n∑

i=1
(yi − wT xi)2

= argmin
w∈RD

eT (w)e(w)

– Where the error vector is e(w) =

y1 − wT x1
. . .

yn − wT xn

 = y −

xT
1
...

xT
n

 w

– This is now a least squares regression problem

– Let X =

xT
1
...

xT
n

 then we have argmin
w∈RD

(y − Xw)T (y − Xw)

– Expand: 1
2wT XXw − wXT y + 1

2yT y (note a factor of 1
2 was added)

– Derivative: XT Xw − XT y = 0 =⇒ XT Xw = XT y
– Therefore ŵML = (XT X)−1XT y

• Another way to write this is XT (Xw − y) = 0, meaning we can interpret this as making the error
vector orthogonal to all the input data

– This is the normal equation
• XT X is the scatter matrix

– This is an estimate of the covariance/correlation matrix of the data
• Regression can be performed in any general vector space, so our model can be nonlinear in x (but still

linear in w)
– In general given any basis function ϕ(xi) we can try to fit yi = wT ϕ(xi) + zi

– Let X =

ϕT (x1)
...

ϕT (xn)

 then ŵML = (XT X)−1XT y

– e.g. we can work in the vector space of polynomials to perform polynomial regression, or the space
of sinusoids for a Fourier series

* For d-degree polynomial regression we’d have ϕT (xi) =
[
1 xi x2

i . . . xd
i

]
– Example: measuring the height of a cannonball hi vs. time ti for i = 1, . . . , n

* Use the model hi = w1ti + w2t2
i + zi = wT xi + zi where xi =

[
ti

t2
i

]
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Bayesian Regression – Regularization

Figure 1: Polynomial regression for different degrees. Green is the underlying function we’re trying to
approximate.

• If we make the model too complex, i.e. too high of a dimension for ϕ, we will get overfitting
• Typically when the model overfits, we get very large weights that are not physically realistic for our

system
– To keep the weights down, we can use regularization
– Here we show a way to derive the same result by instead assuming a prior on w

• Assume that each weight has a prior wi ∼ N (0, τ2); now can find the MAP estimate
• ŵMAP = argmax

w∈RD

p((ϕ(x1), y1), . . . , (ϕ(xn), yn))p(w)

= argmax
w∈RD

n∑
i=1

log
(

1√
2πσ

e− 1
2σ2 (yi−wT ϕ(xi))2

)
+

D∑
j=1

log 1√
2πτ

e−
w2

j

2τ2


= argmin

w∈RD

n∑
i=1

(yi − wT ϕ(xi))2 + σ2

τ2 ∥w∥2

= argmin
w∈RD

n∑
i=1

(yi − wT ϕ(xi))2 + λ∥w∥2

– The first term is the same least squares term as before, but now we have an additional term that
penalizes the norm of w, effectively keeping the weights small

– Let e(w) =


y1
...

yn

0

 −


ϕT (x1)

...
ϕT (xn)
−

√
λ1


w1

...
wD

 and X̃ =


ϕT (x1)

...
ϕT (xn)
−

√
λ1


* The error can again be written as eT (w)e(w)

– Using the same derivation as before, ŵMAP = (X̃T X̃)−1X̃T

[
y
0

]
= (XT X + λ1)−1XT y

– Notice that this result is almost the same as the MLE solution, except with the addition of λ1
– This is known as ridge regression
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• We can also solve this by writing it as a Gaussian system

–

Y1
...

Yn

 =

xT
1
...

xT
n


W1

...
WD

 +
[

Z1
Zn

]
⇐⇒ y = Xw + z

– ŵMAP(y) = (Σ−1
W XT Σ−1

Z X)−1
(

XT 1
σ2 y + 1

τ2 · 0
)

= (XT X + σ2

τ2 1)−1XT y

– This gives us the conditional precision Σ−1
X|Y = 1

τ2 1 + 1
σ2 XT X

– So ΣX|Y = σ2
(

XT X + σ2

τ2 1
)−1

* Notice that XT X + σ2

τ2 1 is related to the covariance
* As we collect more data the added term becomes negligible
* XT X becomes bigger so the covariance shrinks
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