Lecture 11, Feb 12, 2024

Gaussian Discriminant Analysis

e Consider a classification problem where we have classes ¢ € C, each having a prior 7., jointly Gaussian
distributed with a mean of . and a covariance of 3,

e Gaussian discriminant analysis is a special case of hypothesis testing for this type of classification
problem; given an observation of the vector X, we would like to know which class it came from
(i.e. which hypothesis is true)

o Consider the case where all the classes have the same covariance 3, so they differ only by their mean
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— The exponential can then be written as p(y = clz) =

* This is a softmax function
* The exponential in the softmax makes it so that the largest term dominates while all other
terms are usually much smaller
* Each class has an associated 8. and <., which contains all the info of the class
T T
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— The decision rule is () = argmax 81 + .

— This is referred to as linear Gaussian discriminant analysis, since the decision boundary is a linear
function of x
* The boundary occurs where B« +~; = B « + ~o which forms a hyperplane
e More generally, the covariances of the classes are different
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* This is a quadratic form that can define a parabola, hyperbola, or even circles and ellipses
o To obtain the parameters of the Gaussian distribution of each class, we can use ML estimation
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— Note that the variance estimate here is biased; use the version with n. — 1 in the denominator for
unbiased

Gaussian Parameter Estimation

e Let X,Y be jointly Gaussian and let w = FY(} ; we want to find the MAP estimator for X given Y

— i.e. we want to find the distribution of X conditioned on Y

— We will make use of the covariances between elements of X and Y

— Strategy: expand out the exponent of the joint PDF and rearrange it into a form with X as the
variable
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Figure 1: Illustration of the different kinds of Gaussian discriminant analysis.

e The mean of w is p = {HX}
Hy
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— The overall dimension is N x N; the ¥ xy, 3y x matrices are in general rectangular
Axx AXY:|
Ayx Ayy
* This is the opposite of variance; the larger the precision, the more tightly concentrated the
distribution
* Note Xxx # A;CIX, and Axy = Ad x
e Now consider the exponent of the joint PDF

— Let the precision matriz A = 3, = {
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— This gives us f(x|y) and implies that it is jointly Gaussian
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— Let f(z|y) = cexp *5@3 — pxpy) By (@ - HXY)] = cexp [2 (zoxyr — 22" Sy px)y)

— By matching terms we see L xy = A;(lx and px)y = px — A;(leXy(y — py)

— Therefore fx|y(x|y) ~ N(px)y, Zx|y)
e Given this PDF, we can see that the MAP estimate is simply p x|y
— We can show that this is the same as the LMS estimate



— However, we only have this in terms of the precision matrix; can we find it in terms of X7
« Using the Schur complement on ¥ ~! we can find a general expression for each of the A

- Axx = (Bxx —ExvyEZyySyx) !
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— Therefore pxjy = px + SxyIyy (¥ — py), Sxjy = Bxx — SxySyy Sy x

— We get both the mean of the estimate and its sprea
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