
Lecture 11, Feb 12, 2024
Gaussian Discriminant Analysis

• Consider a classification problem where we have classes c ∈ C, each having a prior πc, jointly Gaussian
distributed with a mean of µc and a covariance of Σc

• Gaussian discriminant analysis is a special case of hypothesis testing for this type of classification
problem; given an observation of the vector X, we would like to know which class it came from
(i.e. which hypothesis is true)

• Consider the case where all the classes have the same covariance Σ, so they differ only by their mean
– The posterior is P [y = c|x] = f(x|c)πc∑

c′ f(x|y = c′)π′
c

– The numerator becomes e− 1
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– Let βT

c = µT
c Σ−1 and γc = log πc − 1

2µT
c Σ−1µc

– The exponential can then be written as p(y = c|x) = exp(βT
c x + γc)∑

c′ exp(βT
c′x + γc′)

* This is a softmax function
* The exponential in the softmax makes it so that the largest term dominates while all other

terms are usually much smaller
* Each class has an associated βc and γc, which contains all the info of the class

– With this, we have p(y = c|x) ≈

{
1 βT

c x + γc ≫ βT
c′x + γc′

0 otherwise
– The decision rule is ŷ(x) = argmax

c
βT

c + γc

– This is referred to as linear Gaussian discriminant analysis, since the decision boundary is a linear
function of x

* The boundary occurs where βT
1 x + γ1 = βT

0 x + γ0 which forms a hyperplane
• More generally, the covariances of the classes are different

– log p(y = c|x) = −1
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c (x − µc) − 1
2 det Σc + log πc − D

2 log 2π

– Consider the boundary between two regions:
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* This is a quadratic form that can define a parabola, hyperbola, or even circles and ellipses
• To obtain the parameters of the Gaussian distribution of each class, we can use ML estimation

– π̂c = nc

n
is given by the relative frequency of class c

– µ̂c = 1
nc

∑
i

xc
i is given by the sample mean

– Σ̂c = 1
nc

(xc
i − µ̂c)T (xc

i − µ̂c)
– Note that the variance estimate here is biased; use the version with nc − 1 in the denominator for

unbiased

Gaussian Parameter Estimation

• Let X, Y be jointly Gaussian and let w =
[
X
Y

]
; we want to find the MAP estimator for X given Y

– i.e. we want to find the distribution of X conditioned on Y
– We will make use of the covariances between elements of X and Y
– Strategy: expand out the exponent of the joint PDF and rearrange it into a form with X as the

variable
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Figure 1: Illustration of the different kinds of Gaussian discriminant analysis.

• The mean of w is µ =
[
µX

µY

]
• The covariance is Σw = E[(w − µw)(w − µw)T ] = E

[[
X − µX

Y − µY

] [
(X − µX)T

(Y − µY )T

]]
=

[
ΣXX ΣXY

ΣY X ΣY Y

]
– The overall dimension is N × N ; the ΣXY , ΣY X matrices are in general rectangular

– Let the precision matrix Λ = Σ−1
w =

[
ΛXX ΛXY

ΛY X ΛY Y

]
* This is the opposite of variance; the larger the precision, the more tightly concentrated the

distribution
* Note ΣXX ̸= Λ−1

XX , and ΛXY = ΛT
Y X

• Now consider the exponent of the joint PDF
– − 1

2(w − µw)T Σ−1
w (w − µw)

= −1
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]
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)
– This gives us f(x|y) and implies that it is jointly Gaussian

– Let f(x|y) = c exp
[
−1

2(x − µX|Y )T Σ−1
X|Y (x − µX|Y )

]
= c exp

[
−1

2
(
xσ−1

XY x − 2xT Σ−1
XY µX|Y

)]
– By matching terms we see ΣXY = Λ−1

XX and µX|Y = µX − Λ−1
XXΛXY (y − µY )

– Therefore fX|Y (x|y) ∼ N (µX|Y , ΣX|Y )
• Given this PDF, we can see that the MAP estimate is simply µX|Y

– We can show that this is the same as the LMS estimate
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– However, we only have this in terms of the precision matrix; can we find it in terms of Σ?
• Using the Schur complement on Σ−1 we can find a general expression for each of the Λ

– ΛXX = (ΣXX − ΣXY Σ−1
Y Y ΣY X)−1

– ΛXY = (ΣXX − ΣXY Σ−1
Y Y ΣY X)−1ΣXY Σ−1

Y Y

– Therefore µX|Y = µX + ΣXY Σ−1
Y Y (y − µY ), ΣX|Y = ΣXX − ΣXY Σ−1

Y Y ΣY X

– We get both the mean of the estimate and its sprea
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