
Lecture 9, Jan 26, 2024
Scheduling

• A resource is preemptible if it can always be taken away and used for something else at any time
– e.g. a CPU is preemptible since we can perform context switching to use it for another process at

any time
• A non-preemptible resource cannot be taken away with acknowledgement

– e.g. memory and disk space
– In this case, it is shared through allocations and deallocations
– Some systems may allow you to allocate CPUs

• Scheduling is done by two components: the dispatcher and the scheduler
– The dispatcher is a low-level mechanism that does the actual work of context switching
– The scheduler is a high-level policy that decides which processes to run and when

* The scheduler runs whenever a process changes state
* For non-preemptible processes, once started they have to run until completion

• Process scheduling involves balancing the following tradeoffs:
– Minimize waiting time and response time

* The waiting time of each process is the time that it exists minus the amount of time it is
actually executing

* The response time is the time it waited from arrival until its first time on the CPU
– Maximize CPU utilization
– Maximize throughput

* By extension, we should minimize context switching whenever possible since it introduces
overhead

– Try to achieve fairness
• The burst time of a process is the amount of time a process runs

First Come First Served (FCFS) Scheduling

• The most basic form of scheduling, assumes no preemption
• The first process that arrives gets the CPU
• Processes are stored in a FIFO queue in arrival order

Figure 1: Example processes with arrival and burst times.

Figure 2: Scheduling for the example processes with FCFS.

Shortest Job First (SJF)

• A tweak to FCFS to schedule the job with the shortest burst time first (still assumes no preemption)

1



• Theoretically, compared to FCFS this could reduce the waiting time of processes since shorter jobs are
run first

– In fact, SJF is provably optimal at minimizing wait time with no preemption
• However, SJF is not practical since we don’t actually know the burst times of each process
• Furthermore, SJF starves long-running processes (shorter processes will always get in front of longer

processes, so the longer process can never execute)

Figure 3: Scheduling for the example processes with SJF.

Shortest Remaining Time First (SRTF)

• Adapts SJF to work for preemptions
• Any time a new process arrives, the process with the least remaining runtime gets switched to and

executed
• Further reduces waiting time compared to SJF but again impractical

Figure 4: Scheduling for the example processes with SRTF.

Round-Robin (RR)

• Incorporates fairness unlike the previous algorithms, and actually used in practice
• Execution is divided into time slices (aka quanta) and uses a FIFO queue similar to FCFS; if a process

is still running by the end of its time slice, we preempt it and add it to the back of the queue to ensure
fairness

• On a tie (new process arrives when previous one is preempted), favour the new process first
• Generally RR performance depends a lot on the quantum length and job length

– Typically it has the advantages of low response time and good interactivity, with fair allocation of
the CPU and low average waiting time (when job lengths vary)

– If the time slice is too big, this reduces to FCFS; if the time slices are too small, the processes are
preempted all the time, so a lot of time is wasted doing context switching

* Generally we want time spent context switching to be less than 1%
* We can reduce the time slice size until context switching overhead reaches 1%

– Average waiting time is poor when jobs have similar lengths

2



Figure 5: Scheduling for the example processes with RR and a time slice of 3 units. The queue is shown on
the bottom, vertically.

3


	Lecture 9, Jan 26, 2024
	Scheduling
	First Come First Served (FCFS) Scheduling
	Shortest Job First (SJF)
	Shortest Remaining Time First (SRTF)
	Round-Robin (RR)



