
Lecture 8, Jan 24, 2024
Subprocesses

• int execlp(const char *path, const char *arg, ...); is a more convenient alternative to
execve()

– Instead of having to build an argument array we can use varargs to specify program arguments
– Will also search PATH for the executable, so we don’t have to specify the full path

• int dup(int oldfd); and int dup2(int oldfd, int newfd); duplicates a file descriptor and re-
turns an independent file descriptor that refers to the same file

– The oldfd and newfd file descriptors will refer to the same thing after the call
– dup() will return the lowest file descriptor
– dup2() will close the newfd file descriptor and then make that file descriptor refer to the same

thing as oldfd
* This can guarantee that we get the exact file descriptor number that we want

– This is an atomic system call (can’t be interrupted)
– Note: Closing the original file descriptor does not close the new returned file descriptor! (i.e. we

need to close the file descriptor returned by dup() separately)
• Our goal is to create a new process with a specified executable name, and be able to send to the process’

stdin and receive any data it writes to stdout
– We fork() and call execlp() in the child to start the process
– To get the child’s output, pipe() before forking, and then call dup2() to replace the child’s stdout

file descriptor with the write end of the pipe; now in the parent process we can read from the pipe
to get the child’s output

– Similarly to send data to the child, replace the child’s stdin with the read end of a pipe

1


	Lecture 8, Jan 24, 2024
	Subprocesses


