
Lecture 6, Jan 19, 2024
Basic IPC

• IPC is any method to transfer bytes between two or more processes
• Reading and writing files is a form of IPC
• The ssize_t read(int fd, void buf[.count], size_t count); syscall reads from a file and re-

turns number of bytes read
– 0 is returned on end of file or a closed file descriptor
– We should check for errors!

• The ssize_t write(int fd, const void buf[.count], size_t count); syscall writes to a file and
returns number of bytes written

• Linux always uses the lowest available file descriptor for new opened files, so we could close file descriptor
0 and open a new file, and this will replace stdin

– Similarly we can also replace stdout, stderr, etc
– This can be done in a shell using a redirect, e.g. ./program < input_file > output_file
– Without changing the code the program can work with any type of input/output stream

Signals

• Signals are a form of IPC that interrupts the program
– The kernel sends a number to the program indicating the type of signal
– Note signals can interrupt syscalls like read() and write(), resulting in an EINTR

• Using Ctrl+C sends a SIGINT (interrupt) to the program, which is a signal
• We can write handlers to handle these signals

– The default handler behaviour is to exit the program with an exit code of 128 + signal number
– We can write handlers to ignore the signals so the program won’t exit immediately

• Using the sigaction() syscall allows us to define our own signal handlers
– Signal handlers return nothing and takes an int argument, which is the signal number
– Some standard signal numbers:

* 2: SIGINT (interrupt from keyboard)
* 9: SIGKILL (terminate immediately)
* 11: SIGSEGV (segmentation fault)
* 15: SIGTERM (terminate)

• Can be ignored
• Using the int kill(pid_t pid, int sig); syscall we can send signals manually

– We can use the kill command to send signals (by default sends SIGTERM); use pidof to get a
process’s PID

Interrupts

• Most operations are non-blocking, i.e. returning immediately and we check later if something occurs
• read(), write(), wait() are blocking by default, but they have nonblocking variants/arguments
• To react to changes to a non-blocking call, we can use a poll or interrupt
• Polling continuously checks for changes

– Very simple to setup and we don’t have to worry about things getting interrupted
– This is inefficient and if we don’t poll fast enough our response can be delayed

• Using interrupts, we can register a signal handler to check for e.g. SIGCHLD when children exit, to get
notified immediately

1


	Lecture 6, Jan 19, 2024
	Basic IPC
	Signals
	Interrupts



