Lecture 5, Jan 17, 2024

Process Management

e On Linux a process’s state can be read through /proc/<PID>/status:
— R: Running and runnable (running/waiting)
— S: Interruptible sleep (blocked; can be resumed by the kernel if desired)
— D: Uninterruptible sleep (blocked; cannot be resumed since it is waiting on I/0)
— T: Stopped (can be continued explicitly by the user or another process)
— 7Z: Zombie
e On Unix systems the kernel launches a single user process, init, which is the parent of all other
processes
— This is located at /sbin/init, and is usually systemd
— This executes every other process on the machine and must always be active; if it exits the kernel
will think you’re shutting down
— Some OSes will also create an idle process (e.g. Windows)

187: journald 536: systemd --user 268: udevd

1871: gnome-terminal-server

597: gnome-shell

946: firefox
996: firefox

1686: zsh

1089: firefox

Figure 1: Example process tree.

1248: htop

o Each process is assigned a process ID (PID) on creation, which does not change and is unique for every
active process

— On most Linux systems this goes up to 32768; 0 is reserved/invalid
— The OS can recycle a PID after the process dies
— Each process has its own address space (i.e. its own copy of virtual memory)

Zombies and Orphans

e The parent is responsible for the child and should acknowledge when the child terminates
e If the child exits first, it becomes a zombie process until the parent reads its exit status
— The PCB cannot be removed by the OS until its exit status is read
— Use the pid_t wait(int *status); syscall to check the child’s status
* Returns -1 on failure, 0 for nonblocking calls with no child changes, and the PID of the child
on success
o If there are multiple children, it returns the PID of the first child to terminate
* The child’s status is written to the address *status, which is a bit mask
* Use macros such as WIFEXITED(), WEXITSTATUS () etc to check specifics about the status



— wait () is a blocking system call, i.e. it will not return until the child is terminated
— The waitpid () syscall can be used to check on a child with a specific PID, and allows nonblocking
calls
o When a child terminates the OS sends the parent a signal (SIGCHLD) to ask the parent to acknowledge
the child
— The parent is free to ignore this
— If the parent always ignores it, the child will stay as a zombie until the parent dies, at which point
it becomes an orphan and gets re-parented
e If the parent exits first, the child becomes an orphan process
— Since some process still needs to acknowledge the child’s exit, it needs a new parent
— The OS will re-parent the child, usually to init
* Note: A subreaper process (relatively new Linux feature) will take the place of init and adopt
all orphans that are descendant from it
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