
Lecture 5, Jan 17, 2024
Process Management

• On Linux a process’s state can be read through /proc/<PID>/status:
– R: Running and runnable (running/waiting)
– S: Interruptible sleep (blocked; can be resumed by the kernel if desired)
– D: Uninterruptible sleep (blocked; cannot be resumed since it is waiting on I/O)
– T: Stopped (can be continued explicitly by the user or another process)
– Z: Zombie

• On Unix systems the kernel launches a single user process, init, which is the parent of all other
processes

– This is located at /sbin/init, and is usually systemd
– This executes every other process on the machine and must always be active; if it exits the kernel

will think you’re shutting down
– Some OSes will also create an idle process (e.g. Windows)

Figure 1: Example process tree.

• Each process is assigned a process ID (PID) on creation, which does not change and is unique for every
active process

– On most Linux systems this goes up to 32768; 0 is reserved/invalid
– The OS can recycle a PID after the process dies
– Each process has its own address space (i.e. its own copy of virtual memory)

Zombies and Orphans

• The parent is responsible for the child and should acknowledge when the child terminates
• If the child exits first, it becomes a zombie process until the parent reads its exit status

– The PCB cannot be removed by the OS until its exit status is read
– Use the pid_t wait(int *status); syscall to check the child’s status

* Returns -1 on failure, 0 for nonblocking calls with no child changes, and the PID of the child
on success
• If there are multiple children, it returns the PID of the first child to terminate

* The child’s status is written to the address *status, which is a bit mask
* Use macros such as WIFEXITED(), WEXITSTATUS() etc to check specifics about the status

1



– wait() is a blocking system call, i.e. it will not return until the child is terminated
– The waitpid() syscall can be used to check on a child with a specific PID, and allows nonblocking

calls
• When a child terminates the OS sends the parent a signal (SIGCHLD) to ask the parent to acknowledge

the child
– The parent is free to ignore this
– If the parent always ignores it, the child will stay as a zombie until the parent dies, at which point

it becomes an orphan and gets re-parented
• If the parent exits first, the child becomes an orphan process

– Since some process still needs to acknowledge the child’s exit, it needs a new parent
– The OS will re-parent the child, usually to init

* Note: A subreaper process (relatively new Linux feature) will take the place of init and adopt
all orphans that are descendant from it

2


	Lecture 5, Jan 17, 2024
	Process Management
	Zombies and Orphans



