Lecture 5, Jan 17, 2024

Process Management

e On Linux a process’s state can be read through /proc/<PID>/status:
— R: Running and runnable (running/waiting)
— S: Interruptible sleep (blocked; can be resumed by the kernel if desired)
— D: Uninterruptible sleep (blocked; cannot be resumed since it is waiting on I/0)
— T: Stopped (can be continued explicitly by the user or another process)
— 7Z: Zombie
e On Unix systems the kernel launches a single user process, init, which is the parent of all other
processes
— This is located at /sbin/init, and is usually systemd
— This executes every other process on the machine and must always be active; if it exits the kernel
will think you’re shutting down
— Some OSes will also create an idle process (e.g. Windows)

187: journald 536: systemd --user 268: udevd

1871: gnome-terminal-server

597: gnome-shell

946: firefox
996: firefox

1686: zsh

1089: firefox

Figure 1: Example process tree.

1248: htop

o Each process is assigned a process ID (PID) on creation, which does not change and is unique for every
active process

— On most Linux systems this goes up to 32768; 0 is reserved/invalid
— The OS can recycle a PID after the process dies
— Each process has its own address space (i.e. its own copy of virtual memory)

Zombies and Orphans

e The parent is responsible for the child and should acknowledge when the child terminates
e If the child exits first, it becomes a zombie process until the parent reads its exit status
— The PCB cannot be removed by the OS until its exit status is read
— Use the pid_t wait(int *status); syscall to check the child’s status
* Returns -1 on failure, 0 for nonblocking calls with no child changes, and the PID of the child
on success
o If there are multiple children, it returns the PID of the first child to terminate
* The child’s status is written to the address *status, which is a bit mask
* Use macros such as WIFEXITED(), WEXITSTATUS () etc to check specifics about the status



— wait () is a blocking system call, i.e. it will not return until the child is terminated
— The waitpid () syscall can be used to check on a child with a specific PID, and allows nonblocking
calls
o When a child terminates the OS sends the parent a signal (SIGCHLD) to ask the parent to acknowledge
the child
— The parent is free to ignore this
— If the parent always ignores it, the child will stay as a zombie until the parent dies, at which point
it becomes an orphan and gets re-parented
e If the parent exits first, the child becomes an orphan process
— Since some process still needs to acknowledge the child’s exit, it needs a new parent
— The OS will re-parent the child, usually to init
* Note: A subreaper process (relatively new Linux feature) will take the place of init and adopt
all orphans that are descendant from it



	Lecture 5, Jan 17, 2024
	Process Management
	Zombies and Orphans



