
Lecture 4, Jan 16, 2024
Process Creation

• A Process Control Block (PCB) contains all information about a process
– This includes:

* Process state
* CPU registers
* Scheduling information
* Memory management information
* I/O status
* Anything else that the process needs

– In Linux this is the task_struct struct

Figure 1: Process lifecycle diagram.

• Each process goes through a lifecycle as depicted above
– The “waiting” state means a process is ready to run, but the CPU is not running it yet (due to

scheduling)
– The “blocked” state means a process is waiting for I/O and cannot be run

• In Linux, the /proc directory contains a special filesystem that present the kernel’s state
– Every directory that is a PID that represents a process

• Processes could be created from scratch; we can load the program into memory and create the PCB
(which is what Windows does), but on Unix this works differently

• On Unix systems, instead of creating a new process, we can clone an existing process
– This clones the entire PCB of the old process, so everything is copied, including variables
– The two processes are distinguished using a parent-child relationship
– We could then allow either process to load a new program and set up a new PCB

• To clone a process, use the pid_t fork(void); function (note typedef int pid_t)
– The return value is the PID of the child process, or 0 if currently in the child process, or -1 on

failure
– Syscalls pid_t getpid(); can be used to get the current process PID; pid_t getppid(); gets

the parent process PID
* Note: man <func> can be used to view the manual pages (documentation) for syscalls and

library functions
• int execve(const char *pathname, char *const argv[], char *const envp[]); replaces the

current process with another program and resets
– pathname is the full path of the program; argv are the program args; envp are the environment

variables
* Note: the first element of argv should still be set to the program name

– Returns -1 on failure and sets errno
– This allows a process to be replaced with another one; so to execute another program from a

process, we can fork() and call execve() in the child process

1


	Lecture 4, Jan 16, 2024
	Process Creation


