
Lecture 31, Apr 9, 2024
Virtual Machines

• The goal of a virtual machine is to be able to run multiple OSes on the same system; to each OS, it
appears as if it is the only one running

– The host is the machine that the OSes are running on, which will have its own OS
* A guest OS sees its own virtual copy of the host

– The VM is isolated from the host for security
• The hypervisor or virtual machine manager (VMM) controls virtual machines, including creation,

management and isolation
– Type 1: bare metal hypervisor, which runs directly on the host hardware, with special hardware

support
* Kernel will run in kernel mode, so the hypervisor has even higher privileges than kernel mode

– Type 2: hosted hypervisor, which runs as a normal process on the host’s OS and simulates a
hardware hypervisor

* Slower but no need for specialized hardware

Figure 1: Structure of a machine: (a) typical machine, (b) one machine running 3 kernels through VMs.

• Note VMs are not the same as emulation (which typically translates one ISA to another); the guest
executes instructions directly using the same ISA as the underlying hardware

– A VM could use emulation, but this introduces heavy performance penalties
• VMs enable pause and play; just like the kernel can pause a process, a hypervisor can pause an entire

OS
– To enable this, the hypervisor does context switching between virtual machines
– The guest can be moved between machines without its knowledge just like a process
– This can be useful in e.g. cloud compute services

• Each guest is isolated from each other and the host
– The hypervisor can set limits on CPU, memory, network bandwidth, disk space, etc
– Guests can only access its own virtual hardware, which is useful for experimentation

• VMs can help consolidation
– In a datacenter, there are often many servers that don’t make use of all of their resources (e.g. one

is using a lot of CPU and one is using a lot of memory)
– Using VMs we can have different servers share the same hardware to be more efficient

• A virtual CPU (VCPU) saves all of the state of the entire CPU, allowing the hypervisor to pause and
context switch guests

– This is similar to a PCB, but a PCB only saves enough data for a user-mode process

1



– When a VM is resumed, it loads the VCPU info and resumes the guest
• Each guest still uses user and kernel modes, without any change to their code

– The kernel can still use privileged instructions
– For type 1 hypervisors, the CPU’s hypervisor mode is used to enter a privilege level higher than

kernel mode
– For type 2 hypervisors, the host/hypervisor needs to create a virtual kernel and user mode and

emulate/simulate the hardware

Figure 2: Illustration of trap-and-emulate.

• Type 2 hypervisors need extra strategies to simulate kernel mode instructions that the guest is attempting
to run

– Trap-and-emulate is the strategy of running the guest in user mode, and trapping any instructions
that can only execute in kernel mode

* The errors are caught and explicitly handled by the hypervisor to emulate/simulate the
operation

* The VCPU state is updated according to the instruction, and then we return to the guest
* This significantly slows down these instructions

– Trap-and-emulate doesn’t always work; there are instructions that can be both kernel mode and
user mode

* e.g. on x86, the popf instruction loads flags from the stack, which is different if the instruction
is executing in kernel mode vs. user mode

* Such instructions would not generate a trap and would just always behave as if it were in user
mode

– These special instructions need binary translation; when the VCPU is in kernel mode (according
to the guest), then hypervisor inspects every instruction before execution, and handles any special
instructions

* We trap the user to kernel mode switch instruction
* When the guest is in kernel mode, all instructions can be run natively as normal
* Overall performance suffers a lot, but it works fine most of the time
* This is how Valgrind works

• Intel and AMD both introduced virtualization as a standard in CPUs in the mid-2000s (VT-x/VMX
and AMD-V/SVM)

– This adds the concept of “ring -1”, which is the hardware hypervisor mode
– The host OS kernel claims the hypervisor, allowing it to manage the isolation for guests

• A hypervisor needs to perform scheduling between CPUs on the host machine
– Virtual CPUs in the guest are mapped to physical CPUs; the number of CPUs may not be the

same
– The simplest approach is CPU assignment, which maps VCPUs to physical cores one-to-one, with

2



Figure 3: Illustration of binary translation.

the host using spare physical cores
* This only works if there are more physical cores than VCPUs

– If there are more VCPUs than host CPUs, we need to use a scheduling algorithm like for processes;
this is called overcommitting

* Overcommitting leads to very bad performance for soft real-time tasks on the guest
• Processes may be context switched out even when the guest is not trying to do so

* In this case virtualization has a different observable behaviour
• The hypervisor also needs to manage virtual memory between VMs

– The hypervisor translates the guest’s page tables to the real physical page table
* Each guest kernel is still trying to do its own page management
* This leads to a nested page table
* If there is hardware support, the MMU can use the nested page tables and do both steps of

the translation at once, avoiding the slowdown
– Memory can also be overcommitted

* The hypervisor can have a swap space, leading to double paging
* However the hypervisor doesn’t have a good idea of the guest’s memory access patterns, so

page replacement is usually left to the guest
• Guests could share pages if they are duplicates, like copy-on-write

– The hypervisor detects duplicates by hashing the page contents; when hashes are the same, check
each byte individually to confirm

• The hypervisor also provides virtualised I/O, e.g. network interfaces
– One physical device can be multiplexed to many virtual devices
– The hypervisor can also emulate nonexistent devices
– Direct mapping from physical devices to virtual devices can also be used to give the VM exclusive

access to the device
* The hypervisor still does translation in the middle
* IOMMU is a new hardware solution that removes the hypervisor in these cases to improve

performance
• VMs boot from a virtualised disk, which is specified using a disk image

– The images contain partitions and filesystems within the partitions similar to a physical disk
– The disk image is often one big file; some formats allow for splitting
– The disk image is easily moved to move the VM

• VMs can be used to isolate an application; the app is packaged with all its dependencies into the VM
image, so ABI changes on the host won’t affect it

– However we pay the cost of VM overhead
– For smaller apps, the kernel itself likely takes up a lot of the VM
– Containers (e.g. Docker) are lighter-weight alternatives that use mechanisms on the host OS,

3



e.g. control groups (cgroups) on Linux for process isolation
* Unlike a VM, the contained application shares the same kernel as the host
* Processes inside the container are still isolated, and its resources can still be limited

4


	Lecture 31, Apr 9, 2024
	Virtual Machines


