
Lecture 29, Apr 3, 2024
Memory Allocation

• When declaring normal variables on the stack, the compiler inserts alloca() calls, which allocate
memory on the stack

– The function that called alloca() frees the memory when it returns, so an explicit free() is not
needed

• Dynamic allocation via malloc() can lead to fragmentation
– A fragment is a small contiguous block of memory that is too small to be allocated; like a “hole”

in memory which wastes space
* Every allocation is permanent and contiguous, so between blocks of allocated memory there

can be fragments
• Fragmentation requires the following:

1. Different allocation lifetimes
– e.g. stack allocation does not suffer from fragmentation since all variables live for the same

time
2. Different allocation sizes

– e.g. page allocation does not have fragmentation because all pages are the same size, so any
block of memory is the same

3. Inability to relocate (defragment) previous allocations
– e.g. Java does not have fragmentation since its garbage collector can move blocks of memory

and update reference addresses
• External fragmentation occurs when allocating different sized blocks, and there is no more room for

allocation between blocks
– This is fragmentation between blocks

• Internal fragmentation occurs when allocating fixed blocks, and there is wasted space within a block
– This is fragmentation within a block
– e.g. if memory is only allocated in sizes of powers of 2

• To reduce fragmentation, we want to reduce the number of “holes” between blocks of memory
– If we have holes, we want them to be as large as possible so we can fit future allocations in them

• Allocator implementations usually use a linked list of free blocks
– When an allocation is needed, choose a free block large enough for the request, remove it for the

free list and return it
* Choosing which block to use requires a strategy

– When freeing a block of memory, add it back to the free list
* If it’s adjacent to another free block, we can merge the two to get a larger chunk of free

memory
• There are 3 general allocation strategies:

1. Best fit: choose the smallest block that can satisfy the request
– Requires searching through the entire list unless we come across an exact match
– Too slow in practice
– Tends to leave very large and very small holes; smaller holes may be useless

2. Worst fit: choose the largest block
– Also requires searching the entire list (can’t stop early in this case)
– Too slow in practice
– Tends to be the worst in terms of storage utilization

3. First fit: choose the fist block that can satisfy the request
– Tends to leave “average” sized holes
– Much faster and actually used in practice

1


	Lecture 29, Apr 3, 2024
	Memory Allocation


