
Lecture 28, Apr 2, 2024
Clock Page Replacement

• The clock replacement algorithm is an approximation of the LRU algorithm that is cheap to implement
– Maintain a circular list of pages in memory, with each page having a reference bit, indicating

whether it was recently accessed
* The reference bit is usually stored in the PTE

– An iterator or “hand” points to the next page to be replaced
– When inserting a new page, check the reference bit of the page under the hand; if it is zero, replace

the page and advance the hand; if it is one, set it to zero, don’t replace the page, advance the
hand and check the next page

– When a page is accessed (that is already loaded), the reference bit is set to 1
* This is normally done automatically by the MMU so we get it for free
* The hand is not advanced

Figure 1: Clock replacement example. 6 total page faults.

• Initially we will load all pages into memory in order and fill the entire circular list
– The first time we access an unloaded page, all loaded pages will have a reference bit of 1, so the

hand has to go a full circle
– After the hand goes a full circle and sets all reference bits to 0, we’re back to the original page

being pointed, which is the page being replaced
• For performance, we may choose to disable swapping altogether; sometimes it might make more sense

to know that we’ve ran out of memory, rather than having things run slowly
– Linux has an out of memory (OOM) killer which kills processes that use a lot of memory when

the system runs out
• Increasing the page size allows for speedups; some systems use sizes such as 2 MiB (eliminate the lowest

level of page table), or even 1 GiB (eliminate two levels of page tables)
– 2 MiB is usually known as “huge pages” and 1 GiB is known as “gigapages”
– Larger pages means we can cache more memory in the TLB
– However this leads to more fragmentation (if we only use a small amount of memory, we still need

to use an entire page)

1


	Lecture 28, Apr 2, 2024
	Clock Page Replacement


