
Lecture 26, Mar 19, 2024
inodes

Figure 1: Structure of a Linux inode.

• inodes (index nodes) are how files are stored in a filesystem
– Each inode stores the file size, type, number of hard links (to know when to erase the file), access

rights, creation/modification timestamps, sometimes file contents, and an ordered list of data
blocks

– This is an alternative to other formats such as FAT; UNIX-style filesystems use them
• inodes store pointers to file blocks in addition to metadata

– To be efficient for all file sizes, the file contents can have different levels of indirection
– A typical Linux inode has 15 pointers in total, 12 are direct, 1 single, 1 double, and 1 triple indirect

* The direct pointers directly point to blocks used for the file
* The higher level indirection pointers point to blocks that store additional pointers, like with

page tables
– With this setup the maximum size of a file is approximately 64 TiB
– Another optimization is to store files that are less than 15 × 4 bytes directly in the inode in place

of the pointers, instead of pointing to data blocks
• A directory entry (aka filename) is called a hard link; each hard link points to one inode

– Multiple hard links can point to the same inode; modifying the inode through any of the links will
change the contents

* Additional hard links can be created with ln <src> <dest>
– ls -li will show the inode number linked to by each filename and the number of hard links to

the inode
– When we make a directory, its . and .. will be hard links to inodes, increasing the link count
– Hard links form a DAG (aside from the self-loops of .)

• Deleting a file only removes a hard link (hence the syscall for this is unlink and not delete)
– When there are no more hard links to an inode, it can be recycled and its blocks reused

• A soft link (or symbolic link/symlink) is a pointer to another file on the system
– These can be created with ln -s <src> <dest>
– When attempting to access the symlink, the filesystem is redirected to that file
– Soft link targets do not need to exist; they can be created with a nonexistent target, or the target

can be deleted without notice of the soft link
– If the target does not exist, attempting to resolve the link leads to an error (ENOENT/no such file

1



or directory)
– The size of a soft link is the size of the name it points to

• Soft links can point to each other, and create cycles
– The kernel will detect this when attempting to resolve the link (ELOOP/too many levels of symbolic

links)
• inodes can have different types to represent files, directories, block devices, etc

– Directory inodes do not store pointers to data blocks, but tuples of names and pointers to inodes
• Caching is often done in filesystems to speed up writing to disk

– File blocks are cached in main memory in the filesystem cache
– The blocks have temporal locality (referenced blocks are likely to be referenced again) and spacial

locality (nearby blocks are likely to be referenced)
– A kernel daemon thread periodically writes the changes to disk

* A sync syscall forces the write immediately
• Filesystems can also support copy-on-write and other advanced features (e.g. btrfs)
• Deleting a file involves removing its directory entry, releasing the inode, and freeing the disk blocks,

and a crash can happen at any time, which leads to a storage leak
• Journaling filesystems (e.g. ext4) record current operations in progress in a journal

– This makes the filesystem more resilient; if an unexpected crash occurs, we can recover using the
journal

2


	Lecture 26, Mar 19, 2024
	inodes


