
Lecture 25, Mar 15, 2024
Filesystems

• File access can be sequential (within a file) or random
– The read() and write() syscalls will perform sequential access
– For random access use off_t lseek(int fd, off_t offset, int whence); to set the offset

* whence is either SEEK_SET (absolute/relative to start of file), SEEK_CUR (relative to current
offset) or SEEK_END (relative to end of file)

• Each process stores a local open file table, which is indexed by file descriptor number
– Each item in the local file table points to a location in a system-wide global open file table
– Each GOF location stores the position (offset), flags, and a virtual node pointer (data can be read

from/written to it) for each opened file
* VNodes can represent files, pipes, sockets, etc

Figure 1: Structure of file tables.

• On fork, the PCB is copied, including the local open file table; however, they would still point to the
same entries in the GOF

– This means both processes share the same position; read, write, or seek by one process will affect
all others

– To get an independent copy, we need another open

Figure 2: File table structure created by open("todo.txt", O_RDONLY); fork(); open("b.txt",
O_RDONLY);.

File Allocation

• How do we store a file?
• We can use contiguous allocation and always use sequential blocks, like an array

1



– Space efficient: only needs to store start block and number of blocks
– Random access is fast since we can simply calculate the block number
– Very slow if files need to expand, just like how we have to copy an array to expand it
– Susceptible to internal fragmentation (not filling an entire block) and external fragmentation

(wasted blocks between files)
– Not used in practice

• Linked allocation uses a linked list-like structure where each block points to the next
– Files can grow very easily and there is no external fragmentation (still internal fragmentation

however)
– Random access is very slow since we have to traverse all the blocks (and read them from disk) to

find the block we want
– Not used in practice

• File allocation tables (FAT) moves the linked list to a separate table; each entry in the table points
towards a block used by a file

– One of the most simple filesystems and very commonly used in low-end devices
– Since the table is moved out, this is more performant than linked allocation
– Can grow and shrink easily, no external fragmentation
– Random access is much faster since the table can be held in memory/cache
– Table size has to grow linearly with disk size so this can be very large

Figure 3: File allocation table (FAT) filesystem.

• Indexed allocation uses an array of pointers to blocks to keep track of which blocks are used by files
– Provides even faster random access than FAT, and table size has no relation to disk size
– Each new file will have a block that stores its table

* This means the max size of files is limited by the number of pointers we can store in the block
– e.g. if each block is 8 KiB and pointers are 4 bytes, files can only be 16 MiB large

2



Figure 4: Indexed allocation.

3


	Lecture 25, Mar 15, 2024
	Filesystems
	File Allocation



