Lecture 21, Mar 6, 2024

Semaphores

How can we ensure some fixed order of execution between threads?
Semaphores are shared values between threads/processes that are used for signaling
— They have a value that is an unsigned integer, which can be initialized to anything
* Setting this to some initial number sets the number of waits that can occur at a time without
post
— Two fundamental operations:
* wait: decrement the value atomically; if the value is 0, it waits until a post increments the
value again before decrementing it and returning
* post: increment the value atomically
Semaphores are offered in the <semaphore.h> library
Use int sem_init(sem_t *sem, int pshared, unsigned int value); to initialize a semaphore
— pshared specifies whether the semaphore should be shared between forked processes
— Use sem_destroy(sem_t *sem); to destroy
Use int sem_wait(sem_t *sem); and int sem_trywait(sem_t *sem); for wait and int
sem_post(sem_t *sem); for post
If we want to make one line always execute before another, we can use a semaphore initialized to 0
— Call wait before the line that executes second, which cannot return until post is called by the
other thread
— Call post after the line that executes first, to indicate that the line has been run
— If we want a third line to execute after the previous two, we cannot reuse the same semaphore
because we can’t control whether the second line or third line runs first (even if we post twice or
initialize to 1)
* This would require a second semaphore
— If we initialized the semaphore to 1 instead, the first thread won’t block when it waits initially
static sem_t sem; /* New */
void* print_first(void* arg) {
printf("This is first\n");
sem_post (&sem) ; /* New */
}
void* print_second(void* arg) {
sem_wait (&sem); /* New */
printf("I'm going second\n");
}
int main(int argc, char *argv[]) {
sem_init (&sem, 0, 0); /* New */
/* Initialize, create, and join threads */
}
Semaphores can be used like mutexes; instead of lock we just use wait and instead of unlock we use
post, and initialize the value to 1
— This is often a bad idea since it depends on the initialization of the semaphore, which could be far
from the code that actually uses it
Example: suppose we have a circular buffer, which producers write to and consumers read from; all
consumers share an index and all producers share an index
— The producer shouldn’t write to the buffer if it’s full
— The consumer shouldn’t read from the buffer if it’s empty
— To ensure this, use a semaphore to track the number of empty slots (for the producers) and another
to track the number of full slots (for the consumers)
void init_semaphores() {
sem_init (&empty_slots, 0, buffer_size);
sem_init(&filled_slots, 0, 0);



¥
void producer() { while (/> ... */) {
/* spend time producing data */
sem_wait (&empty_slots);
£fill _slot();
sem_post (&filled_slots); /* New */
3}
void consumer() { while (/* ... */) {
sem_wait (&filled_slots); /* New */
empty_slot();
sem_post (&empty_slots) ;
/* spend time consuming data */

)



	Lecture 21, Mar 6, 2024
	Semaphores


