
Lecture 2, Jan 10, 2024
Operating System Concepts

• IPC (inter-process communication) is how processes transfer data between each other
• File descriptors are a resource that users may read bytes from or write to, identified by an index stored

in a process
– 0 is standard input, 1 is standard output, 2 is standard error

• System calls (syscalls) make requests to the OS
– The write syscall takes a file descriptor, a pointer to a buffer, and a number of bytes to write

* ssize_t write(int fd, const void *buf, size_t count);
– The exit_group syscall takes a status code and exits the current process with that code

* void exit_group(int status);
– Syscalls are traceable via the program strace

• Note: API: application programming interface; abstracts the details and describes the arguments and
return value of a function; ABI: application binary interface: the actual details of the function, how to
pass arguments and what the return value is, e.g. passing arguments using the stack

• System calls are not like function calls; instead we generate an interrupt for the OS using an svc
instruction (aarch64)

– Arguments are not passed on the stack, but through registers x0 to x5; register x8 stores the
syscall number (the type of system call)

– This has the disadvantage that the number of arguments and size of arguments is limited
– In x86_64 the arguments are partially passed using the stack

• ELF (Executable and Linkable Format) is the format used to specify executables and libraries
– The first 4 bytes are always 0x7f followed by “ELF” in ASCII; these are the magic bytes that

indicate the file format
– There is a 64 byte file header and 56 byte program header; these indicate endianness, ISA, ABI,

etc as well as what to load into memory

The Kernel

Figure 1: CPU privilege levels (RISC-V).

• Kernel mode (aka S-mode) is a privilege level on the CPU that allows access to more instructions,
allowing more direct access to hardware

– All user programs run in user mode
– This is a security measure that only allows trusted software to access hardware, e.g. to manage

virtual memory
• The kernel is simply software running in kernel mode
• Syscalls are the only way to transition between user and kernel mode; i.e. if a user program wants to

access hardware, it has to do so via a syscall to the kernel

1



• The kernel can load modules, which allows loading code on-demand
– The modules are executed in kernel mode so they allow access to hardware

• Kernel architecture is the way we decide whether to run services in user or kernel space
– Monolithic kernel run all OS services in kernel mode, including file systems, drivers, etc
– Microkernels run the minimum amount of services in kernel mode, including only services close to

hardware such as virtual memory but not file systems or drivers
– Hybrid kernels are between the two; e.g. on Windows emulation services run in user mode, on

macOS device drivers run in user mode
– Nanokernels and picokernels run even more services in user mode

2


	Lecture 2, Jan 10, 2024
	Operating System Concepts
	The Kernel


