
Lecture 19, Feb 28, 2024
Locks

• When two concurrent threads access the same variable and at least one of them writes to it, a data race
can occur

– When this happens, we can get an inconsistent view of memory
• An atomic operation is an indivisible operation that cannot be interrupted

– The thread can only be preempted between two atomic operations but not during one
• Compilers use an intermediate representation called three address code (TAC)

– Mostly used for analysis and optimization by compilers
– We can use this to reason about data races since it’s low level but easier to read than ASM
– Consists of only individual (atomic) statements, each taking at most 2 operands
– GCC’s TAC is called GIMPLE; use -fdump-tree-gimple/-fdump-tree-all to see it

• Example: two concurrent threads incrementing a shared counter which starts at 0
– Each increment consists of a read, increment, and then write back
– If the reads and writes are interleaved, one thread may read the value of the counter before the

other is done incrementing it, so they will overwrite each other’s results
– Depending on the specific ordering of reads and writes, the result may be different

Figure 1: All possible orderings and results of two concurrent threads incrementing a counter, starting at 0.

• To avoid data races, we need to prevent two threads from accessing the variable at the same time
• We can use a mutex (stands for Mutual Exclusion)

– pthread_mutex_t can be used
– Use pthread_mutex_init() or assign to PTHREAD_MUTEX_INITIALIZER to init the mutex
– Use pthread_mutex_destroy() to destroy the mutex
– Between a call to pthread_mutex_lock() and pthread_mutex_unlock(), we have a critical

section (or protected), where only a single thread can execute at a time
* A thread can only enter this section if it can acquire the lock
* The lock can only be acquired by a single thread at a time

– Use pthread_mutex_trylock() to attempt to acquire the lock in a non-blocking manner
• If we wrap the counter increment between a pthread_mutex_lock() and pthread_mutex_unlock(),

we won’t ever see a data race

1



• Critical sections should have the following properties:
– Safety (aka mutual exclusion)

* Only a single thread should be in the critical section at a time
– Liveness (aka progress)

* If multiple threads reach the critical section, only one can proceed
* The critical section can’t depend on other threads (which can lead to deadlock)

– Bounded waiting (aka starvation-free)
* A thread waiting to acquire a lock must eventually proceed

• The locking mechanism should have the following properties:
– Efficiency: shouldn’t consume resources when waiting
– Fair: each thread should wait approximately the same amount of time
– Simple: should be easy to use, hard to misuse

• Synchronization can happen on different levels
– At the lowest level we have hardware atomic operations
– Then we have high-level synchronization primitives like mutexes
– Finally we have properly synchronized applications without data races

• For a single processor system, locks are very easy to implement – simply disable interrupts during the
critical section

2


	Lecture 19, Feb 28, 2024
	Locks


