
Lecture 18, Feb 27, 2024
Sockets

• Sockets are another form of IPC that allows communication over a network (in addition to on the same
machine)

– All network connections have to go through sockets
• After sockets are set up, a file descriptor is returned that we can read() and write() to as usual and

close() when done
• The server follows these steps:

1. int socket(int domain, int type, int protocol);: Creates the socket
– domain specifies the general protocol

* AF_UNIX: local communication of the same machine
* AF_INET: IPv4
* AF_INET6: IPv6

– type is either SOCK_STREAM or SOCK_DGRAM (TCP or UDP)
* For stream connections, the data sent arrives in the same order; we have a persistent

connection (we’ll know when we lose it), which is reliable but slow
* For datagram connections, there is no guarantee of arrival order and connection persistence,

but is faster
– protocol further specifies the protocol and is mostly unused
– Returns a file descriptor (but for a server we shouldn’t read/write to this)

2. int bind(int socket, const struct sockaddr *addr, socklen_t addr_len);: Attach the
socket to some location (a file, IP and port, etc)

– 3 different types of sockaddr structures: sockaddr_un (UNIX socket, i.e. a path),
sockaddr_in (IPv4 address), sockaddr_in6 (IPv6 address)

– addr_len is sizeof(sockaddr)
– Set sun_type of the sockaddr struct to the same as the domain of the socket and sun_path

to the path (note this is a char[], not char*, so size is limited)
– For UNIX sockets, we should use int unlink(const char *pathname); to clean up the

socket path (after closing the socket); otherwise the file corresponding to the socket will remain
3. int listen(int socket, int backlog);: Listen for connections on the socket and sets the

queue limit
– backlog is the limit of outstanding connections queue, managed by the kernel; passing 0 uses

the default kernel queue size
* If the queue is full, new connections will not be allowed

4. int accept(int socket, struct sockaddr *address, socklen_t *address_len);: Accept
an incoming connection

– address, address_len is an optional return of the connecting address (NULL to ignore)
– This returns a file descriptor we can read and write to, corresponding to the new client

connection
– Will block until a client connects

• The client follows these steps:
1. int socket(int domain, int type, int protocol);: Creates the socket
2. int connect(int sockfd, const struct sockaddr *addr, socklen_t addr_len);: Con-

nects to some location, giving a file descriptor
– This will use the same name as the bind() call of the server
– On success, sockfd may be used as a normal file descriptor (the function returns 0 on success)

• Instead of read and write, we can use send() and recv() syscalls, which are similar but take additional
flags

– e.g. MSG_OOB (send/receive out-of-band data), MSG_PEEK (look at data without reading),
MSG_DONTROUTE (send without routing packets)

– sendto() and recvfrom() take an additional address
* Ignored for stream sockets since there’s a persistent connection

1


	Lecture 18, Feb 27, 2024
	Sockets


