
Lecture 16, Feb 14, 2024
Threading Implementations

• Threading can be implemented either as user threads, or kernel threads
– User threads run completely in the user-space; the kernel doesn’t treat the process any differently
– Kernel threads are managed by the kernel and gets treated specially

• In both models, threads require a thread table (just like a process’ process table); this is either in user
or kernel space depending on implementation

• Generally threading libraries can work in one of three ways:
– Many-to-one: many user threads are mapped to a single kernel thread; threads are completely

managed in user space
* The kernel only sees a single process
* Since everything is done in user space, thread creation/deletion is fast and no context switching

is needed
* However if one thread blocks, all other threads are blocked since the kernel can’t distinguish
* Does not allow parallelism since the kernel only sees a single process

– One-to-one: each user thread maps to a single kernel thread
* The kernel handles everything while the threading library is just a thin wrapper
* Threads are slower, but can execute in parallel; one thread can’t block everything
* This is what pthread is

– Many-to-many: many user threads map to many kernel threads
* We have more user threads than kernel threads
* Can set the number of kernel threads to the same as the number of CPU cores to fully allow

parallelism
* In theory gives the best of both worlds, but in reality can be very complicated and unpredictable

• What happens when we call fork() on a multithreaded program?
– On Linux the new process has only one thread, corresponding to the one that called fork()
– pthread_atfork() can be used to register functions to be run on fork, for advanced control of

forking behaviour
• If a multithreaded process gets sent a signal, on Linux only one random thread will receive the signal

– We have no control over the thread that gets interrupted
• Instead of many-to-many thread mappings, a thread pool is often used

– A thread pool maintains a number of threads, usually corresponding to the number of CPUs in
the system

– When no tasks are given, the threads are sleeping; as tasks come in, the threads get waken up and
starts executing the tasks

– These threads are reused after tasks are done
– This is often done when you have lots of very small tasks, so thread creation can introduce

significant overhead

1


	Lecture 16, Feb 14, 2024
	Threading Implementations


