
Lecture 15, Feb 13, 2024
Threading

• Concurrency: switching between two or more tasks (interrupting the tasks to context switch)
– The goal is to make progress on multiple things

• Parallelism: running two or more things independently at the same time
– The goal is to run as fast as possible

• Threads are like processes, but the memory is shared
– Registers, program counter, and stack are still independent
– Address space is shared, so if one thread modifies memory, all other threads see it
– To get memory specific to a thread, we need to specify thread-local storage (TLS)
– One process can have multiple threads

• Due to fast context switching, threads can execute concurrently even with just a single CPU
• Threads are lighter than processes and faster to run because:

– Code/data/heap is shared
– Cheap creation (no need to copy resources like page tables)
– Cheap context switching (no need to flush caches like the TLB)

• Threads live within an executing process (unlike processes which can execute independently); when a
process dies, all its threads will die with it

– When a thread dies, only its stack is removed from the process
– So once the main thread dies, all other threads immediately stop executing

* There is no such thing as orphan threads, but there can be zombie threads since their resources
don’t get released until you wait

– There is no parent-child relationship for threads

int pthread_create(pthread_t* thread,
const pthread_attr_t* attr,
void* (*start_routine)(void*),
void* arg);

• To create a thread, use the <pthread.h> library
– Arguments:

* thread: output handle to a thread struct that will be populated
* attr: thread attributes
* start_routine: a function pointer to start execution at
* arg: additional argument to pass to start_routine

– Returns 0 on success or error number otherwise
– Unlike fork(), the new thread starts executing at a specified different location instead of the

current location
• int pthread_join(pthread_t thread, void **retval); will wait for the thread to terminate before

returning
– This is the equivalent of wait() for threads
– The pointer **retval is set to the location of the void* returned by the thread function
– Note calling this more than once on a thread leads to undefined behaviour!

• void pthread_exit(void *retval); will terminate a thread early with the specified return value
– This is called implicitly when the function of a thread returns

• Joinable threads are the default kind, which wait for a thread to call pthread_join() before releasing
its resources

– We can detach threads via int pthread_detach(pthread_t thread);
* These threads are non-joinable, so calling join on them is undefined behaviour
* Calling detach on a detached thread is undefined behaviour

– Calling pthread_exit(NULL); in the main thread will keep the process alive until all other threads
have exited

* This is useful for detached threads since we can’t join them

1

• Thread attributes such as the stack size can be set explicitly using pthread_attr functions

2

	Lecture 15, Feb 13, 2024
	Threading

