
Lecture 14, Feb 7, 2024
Dynamic Priority Scheduling

• Feedback scheduling is a scheme where the scheduler itself manages the priories of the processes
– Processes that don’t use their time slice has their priority increased, while priorities that do use

their full time slice has their priority decreased
– Each process starts with some priority Pn

– The scheduler always picks the lowest priority number to schedule
* If the process yields (gives up execution, e.g. due to I/O), switch to another process
* If another process with lower priority becomes ready, switch to that process and preempt the

original one
– The time each process executes for during the time slice is recorded as Cn

– At the end of the time slice, the priority of the process is updated as Pn ←
Pn

2 + Cn, and then
Cn ← 0

* Note priorities are only updated at the end of time slices or priority intervals
* When a process with lower priority is ready, we compare the current priorities without updating

first
• Example below shows dynamic priority scheduling for processes X, Y, A, B arriving in order

– X and Y are I/O bound processes that execute for 1 time unit and block for 5
– Timer interrupts occurs every time unit, time slices are 10, priority interval is 10

Figure 1: Scheduling for the case above if all processes start with priority 0.

Figure 2: Scheduling for the case above if A and B have priority 6, X and Y have 0.

Memory Mapping
• The void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset);

syscall is used to map files to a process’ virtual memory space
– This allows us to map a file’s contents to memory, so instead of reading from the file, we can read

from the virtual addresses
* Note writing back to the virtual address doesn’t write back to the file
* The contents of the file are copied into memory on-demand

– Arguments:
* addr: suggested virtual address to map to (NULL will let the kernel pick)
* length: number of bytes to map
* prot: protection (permission) flags (read/write/execute)

1



* flags: mapping flags (shared/private/anonymous)
• This specifies the behaviour when the process gets forked
• Private means the child process can’t access the same virtual addresses; shared means

both processes will share the memory
• Shared memory mapping is a way to implement IPC
• Anonymous means there is no underlying file (use memory)

* fd: file descriptor to map
• If this is set to -1 (in conduction with using the anonymous flag) this will be mapped to

memory instead of a file
* offset: offset in the file to start the mapping at

• This needs to be a multiple of the page size for alignment reasons
– Use int munmap(void *addr, size_t length); to undo the mapping

• mmap calls are lazy and only sets up page tables
– The newly created PTE is invalid, so on first access, the MMU triggers a page fault, the kernel

detects this and copies over the page
– Only the parts that get used get read

• mmap can be useful for random access of a file and to only read parts of the file that we actually need
instead of reading in the entire file

2


	Lecture 14, Feb 7, 2024
	Dynamic Priority Scheduling
	Memory Mapping


