
Lecture 13, Feb 6, 2024
Page Table Implementations

• How do we make page tables faster?
– We’ll likely access the same page multiple times in succession
– A process may only need a few page mappings at a time
– To speed up memory accesses, we use caching

• The translation look-aside buffer (TLB) caches page table entries
– When a process accesses memory, it would be first looked up in the TLB, and only translated in

the case of a TLB miss
– On a hit, the time taken to access memory is the TLB search time plus memory access time; on

miss the time is the TLB search time, plus memory access time and PPN lookup time
– We can calculate the effective access time (EAT, the expected value of access time) by taking a

weighted average using α, the TLB hit rate

Figure 1: Translation look-aside buffer.

• Note since each process has its own virtual memory mapping, we need to handle the TLB when context
switching

– Most implementations flush the TLB on context switch
– Some implementations attach process IDs to the TLB

• Because of the TLB, programs run faster if they use memory continuously and access the same pages
most of the time

• The sbrk syscall is used for userspace page allocation
– This grows or shrinks the heap
– Memory allocators use mmap to bring in large blocks of memory

Figure 2: Kernel allocation of the virtual address space.

1



• The kernel can also map its memory directly to processes’ virtual memory as a fixed virtual address, so
the process can make syscalls without actually doing a syscall

– e.g. clock_gettime()

2


	Lecture 13, Feb 6, 2024
	Page Table Implementations


