Lecture 11, Jan 31, 2024

Virtual Memory

e We need virtual memory to satisfy the following goals:
— Multiple processes must be able to co-exist — the same virtual address can map to different physical
addresses
— Processes should not be aware that they are sharing physical memory
— Processes cannot access another process’” memory (unless explicitly allowed)
— Performance close to directly using physical memory
— Limit fragmentation (wasted memory)
o The memory management unit (MMU) is the hardware responsible for memory mapping and permission
checks
— Memory is divided into fixed size pages (typically 4096 bytes)
— Pages in virtual memory are pages, while pages in physical memory are called frames
— A page is the smallest possible unit of memory that the kernel can allocate
e Virtual memory used to be implemented with segmentation, which is no longer used
— Virtual address space is divided into segments for code, data, stack and heap which can all be
resized
— Segments are costly to relocate and leads to fragmentation
— Each segment contains a base address, limit, and permissions
— When accessing memory, the MMU checks that the offset is within the limit, and then checks for
permissions before giving access
e Usually the more virtual memory we map, the more expensive it will be
— For most systems we use a 39-bit virtual address space, which gives 512 GiB of addressable memory
to each process
o Mapping is usually implemented using a page table (a lookup table), indexed by the virtual page
number (VPN) and gives the physical page number (PPN)
— The kernel sets up the page table and the MMU indexes it
The least significant 12 bits are the offset (4096 possible values to match our page size) and the
other 27 are used to index the page table
— The number of bits used for the PPN can be different than the VPN
— Each entry in the page table has a structure shown in the figure below

27 bits 12 bits
Virtual address | Unused| Index | Offset |

|

227 entries

Page Table

44 bits 12 bits
Physical address | Unused PPN Offset

Figure 1: Illustration of the page table.

o Example: given an 8-bit virtual address, 10-bit physical address, 64 byte pages:
— How many virtual pages are there?
* Each page is 64 bytes so offset is 6 bits
* This leaves 2 bits for the VPN, which gives 4 virtual pages
— How many physical pages are there?

Dirty?
Reserved for Supervisor Use Accessed?
Global?
User?
18 bits 44 bits 2 bits |

Reserved PPN RSW D{A[G|IU|X|W|R[V

63 54 53 10 9 8 7 6 5 4 3 2 1 0
Page Table Entry (PTE) |
Valid?
Readable?
Writeable?
Executable?

Physical Page Number
|

Figure 2: Structure of a page table entry (PTE).

* 10 — 6 = 4 bits for the PPN gives 16 physical pages
— How many entries are in the page table?
* 4 entries since there are 4 virtual pages
— Given the page table [0x2, 0x5, 0x1, 0x8] what is the physical address of 0xF17
0xF1 = 0b1111'0001
Offset is Ob11'0001
VPN is Ob11 (page 3) so PPN is 0x8 = 0b1000
Final address is Ob10'0011'0001 = 0x231
o Each process has its own page table, which is managed in software
— When a process is fork()ed, the page table is copied from the parent
— The kernel implements copy-on-write for fork()ed programs — the memory is shared until a
process tries to write to it, at which point it is copied
* The write permission bit is turned off initially before memory is copied
— We can use the vfork() syscall to fork but do not copy the page tables
* If any memory is modified by the child, the behaviour is technically undefined since the
memory is shared with the parent
* Use only for performance sensitive programs or when we exec() immediately after fork()
« Next time on ECE353: The page table has 227 bits which would take an entire gigabyte, so how do we
give each process its own copy?

EE SR

	Lecture 11, Jan 31, 2024
	Virtual Memory

