
Lecture 11, Jan 31, 2024
Virtual Memory

• We need virtual memory to satisfy the following goals:
– Multiple processes must be able to co-exist – the same virtual address can map to different physical

addresses
– Processes should not be aware that they are sharing physical memory
– Processes cannot access another process’ memory (unless explicitly allowed)
– Performance close to directly using physical memory
– Limit fragmentation (wasted memory)

• The memory management unit (MMU) is the hardware responsible for memory mapping and permission
checks

– Memory is divided into fixed size pages (typically 4096 bytes)
– Pages in virtual memory are pages, while pages in physical memory are called frames
– A page is the smallest possible unit of memory that the kernel can allocate

• Virtual memory used to be implemented with segmentation, which is no longer used
– Virtual address space is divided into segments for code, data, stack and heap which can all be

resized
– Segments are costly to relocate and leads to fragmentation
– Each segment contains a base address, limit, and permissions
– When accessing memory, the MMU checks that the offset is within the limit, and then checks for

permissions before giving access
• Usually the more virtual memory we map, the more expensive it will be

– For most systems we use a 39-bit virtual address space, which gives 512 GiB of addressable memory
to each process

• Mapping is usually implemented using a page table (a lookup table), indexed by the virtual page
number (VPN) and gives the physical page number (PPN)

– The kernel sets up the page table and the MMU indexes it
– The least significant 12 bits are the offset (4096 possible values to match our page size) and the

other 27 are used to index the page table
– The number of bits used for the PPN can be different than the VPN
– Each entry in the page table has a structure shown in the figure below

Figure 1: Illustration of the page table.

• Example: given an 8-bit virtual address, 10-bit physical address, 64 byte pages:
– How many virtual pages are there?

* Each page is 64 bytes so offset is 6 bits
* This leaves 2 bits for the VPN, which gives 4 virtual pages

– How many physical pages are there?

1



Figure 2: Structure of a page table entry (PTE).

* 10 − 6 = 4 bits for the PPN gives 16 physical pages
– How many entries are in the page table?

* 4 entries since there are 4 virtual pages
– Given the page table [0x2, 0x5, 0x1, 0x8] what is the physical address of 0xF1?

* 0xF1 = 0b1111'0001
* Offset is 0b11'0001
* VPN is 0b11 (page 3) so PPN is 0x8 = 0b1000
* Final address is 0b10'0011'0001 = 0x231

• Each process has its own page table, which is managed in software
– When a process is fork()ed, the page table is copied from the parent
– The kernel implements copy-on-write for fork()ed programs – the memory is shared until a

process tries to write to it, at which point it is copied
* The write permission bit is turned off initially before memory is copied

– We can use the vfork() syscall to fork but do not copy the page tables
* If any memory is modified by the child, the behaviour is technically undefined since the

memory is shared with the parent
* Use only for performance sensitive programs or when we exec() immediately after fork()

• Next time on ECE353: The page table has 227 bits which would take an entire gigabyte, so how do we
give each process its own copy?

2


	Lecture 11, Jan 31, 2024
	Virtual Memory


