
Lecture 10, Jan 30, 2024
Advanced Scheduling

• Sometimes we want to favour some processes over others, so we can assign a priority to each process
– Processes with higher priority will run first, and equal priority processes use round-robin
– Can be preemptive or non-preemptive
– e.g. on Linux the priority ranges from -20 (highest) to 19 (lowest)

• If there are lots of higher priority processes this can lead to starvation
– We can have the OS dynamically change the priority
– Increase the priority of processes that haven’t been executed for a long time and then restore it

after it runs
• In priority inheritance a process inherits the highest priority of the waiting processes, and is reverted

back to the original priority after the dependency is resolved
• Processes can be foreground (receives input and interacting with the user) or background

– Foreground processes need better response time since the user is interacting with it
– Background processes would have a group ID that is different from its terminal group ID
– This is harder to determine today as systems have gotten more complex

• To address this we can use different queues for foreground and background processes, e.g. RR for
foreground and FCFS for background processes

– To decide which queue runs, we can use a further layer of RR between the queues and have
priorities for each queue

• In general scheduling involves a series of tradeoffs and heuristics instead of one right answer

Multiprocessor Scheduling

• Assume every core is a symmetric multiprocessing (SMP) system, i.e. all CPUs have the same physical
memory but each have their own private cache

• We can use the same scheduling system (global scheduler) and just keep running processes as long as
CPUs are available

– This is not scalable since there is only a single scheduler and each CPU needs to wait for the same
global scheduler

– Also poor cache locality as processes are swapped between cores
– Approach in Linux 2.4

• Each CPU can use its own scheduler; new processes are assigned to some CPU and after that each
CPU manages its own scheduling

– Can assign to the CPU with the lowest number of processes
– This avoids the scalability issue (no blocking on resources) and cache locality issue
– Can lead to load imbalance, as we don’t know how long each task will run, so some CPUs may

end up with fewer or less intensive processes
• We can use a compromise between the two approaches and use a global scheduler that can re-balance

per-CPU queues
– If a CPU is idle, we can take a process from another CPU; this is known as work stealing
– Use processor affinity (preference of a process to stay on the same core) to decide which processes

can switch CPUs
– This is a simplified version of the O(1) scheduler in Linux 2.6

• Sometimes we want to schedule multiple processes simultaneously as a group (gang scheduling or
coscheduling)

– The processes may have dependences; occurs mostly in high-performance computing
– Each process should run on its own core all at the same time to maximize performance
– This requires a global context-switch across all CPUs as each CPU can’t be independent

Real-Time Scheduling

• In real-time systems, processes have time constraints for either deadlines or rates

1



– e.g. audio output, autopilot
• Hard real-time systems guarantee that a task completes within a certain amount of time

– Each instruction will be counted so we know exactly how long each process is running for
– This is often the case on simple embedded systems

• Soft real-time systems just assign a higher priority to critical processes
– The deadline is met in practice
– Most general-purpose operating systems are soft real-time since we have little control over what

the user does and modern systems are very complex
– e.g. Linux

Scheduling on Linux

• Linux uses FCFS and RR scheduling
– Processes with the same priority use a multilevel queue
– For soft real-time processes, the highest priority process is always scheduled first
– For normal processes it adjusts the priority based on aging and available CPU time

• Real-time processes are always prioritized in Linux
– They will either be scheduled using FCFS (SCHED_FIFO) or RR (SCHED_RR)
– There are 100 static priority levels (0 - 99)

• Normal processes use normal scheduling policies
– Priority ranges from -20 to 19 with higher numbers being lower priority
– By default the priority is 0

• Priories can be set with the nice and sched_setscheduler syscalls
– The “nicer” a process is, the lower its priority and it’ll use up less of the CPU

• Linux maps niceness and soft real-time priority to an internal priority where lower numbers are always
higher priority as shown in the figure below

Figure 1: Linux process priorities.

Completely Fair Scheduler

• Modern versions of Linux (past 2.6.23) use the completely fair scheduler (CFS) instead of the O(1)
per-CPU scheduler

• The O(1) scheduler had fairness issues for different priority processes
• If context switching had no cost, then we’d have an infinitely small timeslice and all processes would be

running at the same time and get the same amount of CPU time

• In CFS, each runnable process has a “virtual runtime” in nanoseconds
• At each scheduling point where the process runs for time t, the virtual runtime of the process is increased

by t multiplied by a weight, which is based on priority
– Higher priority processes have lower weight, so their virtual runtime increase slowly and as a result

they get scheduled more
– Virtual runtime only increases

• The scheduler will always select the process with the lowest virtual runtime and computes its dynamic
time slice based on the IFS

• CFS uses a red-black tree with virtual runtime as the key
• CFS favours I/O bound processes by default (processes that spend the most time waiting)

2



Figure 2: Ideal fair scheduling for 4 processes arriving at time 0, with burst times 8, 4, 16, 4.

3


	Lecture 10, Jan 30, 2024
	Advanced Scheduling
	Multiprocessor Scheduling
	Real-Time Scheduling
	Scheduling on Linux
	Completely Fair Scheduler



