
Graph Search
Problem defined by: states S and initial state, actions A, state transition model T (s1 ∈ S, a ∈ A) 7→
s2 ∈ S, goal test, cost function C(a) : A 7→ R.

Consistency: ∀vi, vj , h(vi) ≤ h(vj) + c(vi, vj) where where vj is a successor of vi and c(vi, vj) is the cost of
moving from vi to vj , i.e. for each step we move backwards, the value of the heuristic at the further node ≤
the value at the closer node plus the cost of the step.

Admissibility: ∀vi, h(vi) ≤ C∗(vi) = g(w) − g(vi) where C∗(v) is the true optimal cost to reach the goal
from v, i.e. the value of the heuristic is always less than or equal to the true cost of reaching the goal.

A∗ is optimal for consistent h, or admissible h with tree search. Consistency and h(w) = 0 =⇒ admissibility.
Admissible heuristics can be created by relaxing problem constraints.

For cycle checking, we keep track of all previously seen nodes (expanded or in frontier) and their cost. When
adding a new node to the frontier, if it matches a previously seen node and has higher (or equal) cost, don’t
add it. If it matches but has lower cost, add it and prune the higher cost node from the frontier. Note for A∗

the cost is taken as g(n) and not f(n).

Local Search
Problem defined by: states S, neighbours N(s ∈ S), value Val(s) (lower values more desirable)

Cooling schedule T (t) is typically decreasing, application dependent. Simulated annealing terminates when
T = 0 or Val(C) = 0. Both local search algorithms are incomplete.

Constraint Satisfaction
Problem defined by: variables X = { x1, x2, . . . , xn }, domains D = { Dx1 , Dx2 , . . . , Dx3 }, constraints C
relating to domains. NP-Hard.

Default inference is expensive. Methods to limit depth: forward checking: only check the effect of assigning
the current variable (don’t add x to queue); or add to queue only if the variable has fewer than N valid
values left, |T | ≤ N .

For Infer, only operate on the variables that haven’t been assigned. Heuristics: Minimum Remaining
Value: PickUnassignedVar choose the unassigned variable with the smallest effective domain size (allows
quick backtracking); Least Constraining Value: OrderDomainValue choose the value that rules out the
fewest domain values for other variables (so we maximize the chances of success).

Variants: boolean satisfiability (B-SAT), where Dxi
= { 0, 1 }; binary CSP, where every constraint C(xi, xj)

is over 2 variables. 2-SAT: combination of the two, is the only one with polynomial time solutions.

1

	Graph Search
	Local Search
	Constraint Satisfaction

