
Lecture 9, Mar 12, 2024
Variable Elimination Complexity

• As we perform variable elimination, we may end up with factors that had more variables than they
began with, due to multiplication of factors

– If each variable is binary, then a factor with k variables takes 2k space and time to compute/store
– Can we put a bound on this?

• A hypergraph is a set of vertices like an ordinary graph, but instead of edges connecting two vertices, it
has hyperedges connecting multiple vertices

– Each hyperedge is a set of vertices

Figure 1: An example hypergraph.

• For a Bayesian network we start initially with a hypergraph where the vertices correspond to each
variable and the hyperedges are the factors

• When we try to eliminate a variable C, we remove all the factors where the variable appears and add a
new factor

– We remove the hyperedges that C appears in and add a new hyperedge, containing all the variables
that C was once connected to

– The size of the hyperedges can grow or reduce
• Given an ordering of the variables and an instal hypergraph H, eliminating the variable yields a sequence

of hypergraphs H0, . . . , Hn

– The elimination width k of π is the maximum size of any hyperedge in any of the hypergraphs
* The elimination width of H is the minimum elimination width of any of the n! different

orderings of the variables
– The complexity is O(2k) in both time and space (since a table with 2k entries needs to be computed

and stored)
– In the worst case k can be equal to the number of variables

• We can try to find the best order of elimination that gives the smallest k, but this is an NP-hard
problem

– Heuristics can be used to find orderings with low elimination widths
– In practice, we don’t often encounter graphs that force a very high elimination width

• A polytree is a singly connected Bayesian network, i.e. there is only a single path between any pair of
nodes

– Eliminating a singly connected node (i.e. node connected to only one other node) will not increase
the size of the hypergraph

– Having a polytree ensures that at every step in elimination, there is always at least one singly
connected node

– Therefore the elimination width is simply the size of the largest input conditional probability table

1



• On a polytree, variable elimination can run in linear time in the size of the network (not necessarily
linearly in the number of variables)

– There always exists a good variable elimination order, but not every order is good

Figure 2: An example polytree.

• One effective heuristic for VE is to always eliminate the variable that creates the smallest sized factor
– This is the min-fill heuristic
– For polytrees, this guarantees linear time

Bayesian Model Selection
• Based on the data we have, we can come up with a number of different models; how do we select which

one is the best?
• We can randomly leave out a part of the data as the validation set, and make the model on the training

set
• The model to keep is the one that makes the validation data more likely

– Use Bayesian hypothesis testing/likelihood ratio test

– P (E|M1)P (M1)
P (E|M2)P (M2)

M1
≷
M2

1 where E is a set of evidence in the validation set

• We can improve models with local search, or start with a random model and build it using local search
– Define a neighbourhood around the model, e.g. by removing or adding some edges
– Now check everything around the neighbourhood of a model and compare it with the model using

the likelihood ratio
– Use the new model if it’s better and repeat with the local search, or use simulated annealing

2


	Lecture 9, Mar 12, 2024
	Variable Elimination Complexity
	Bayesian Model Selection


