
Lecture 7, Feb 27, 2024
Bayesian Networks

• So far we have only discussed deterministic, fully observable task environments
• Partially observable or stochastic environments can be modelled with probability
• Often we have multiple models of our state, and then based on evidence, we classify which model is

correct (or which one we’re most likely to be in)
• How can we store conditional probabilities efficiently?

– If we have n variables each taking 2 values, to store the conditional probability over all combinations
of variables we’d need 2n entries

– Not all variables may be dependent on each other; how can we take advantage of this?
• A Bayesian network is a probabilistic graphical model representing a set of variables and their conditional

dependence via a directed acyclic graph (DAG)
– In the DAG, an edge A → B denotes that B is conditionally dependent on A
– Traversing the DAG gives us a chain of dependence between events
– Often human intuition is used to determine which events have a causal relationship
– At each node, we store a conditional probability table for the probability of the event at the node,

given all its parents
* The table has an entry for every combination of its parents’ values

– If a node has no parents, we simply store the absolute probability of that event (not conditioned
on anything)

• We don’t need to collect data about every possible event from the same sample, i.e. we may compute
probabilities separately, using different datasets, for different nodes

– However we always assume that whatever sample we take is representative of the population
– This means we can combine different studies

• Bayesian networks allow compact representation of probability distributions
– For a network over n nodes, if a node has at max q parents, then the space complexity is O(n · 2q),

which is often significantly less than 2n

Figure 1: Example Bayesian network.

• The crucial assumption of Bayesian networks is the Bayesian Network Law: for any node, given its
parents, its probability is completely independent of its non-descendants; i.e. nothing that came before
it matters except for its parents

– Note: v is a descendant of u if there is a directed path from u to v
– Note that the probability of a node can still depend on its descendants
– This also works even if we don’t give the direct parents, as long as the probability of all the direct

parents can be computed from the grandparents given
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– e.g. in the above graph, P (I|G, E, D) = P (I|G, E) since I is not a descendant of D
• Example: in the graph below:

– A and E are not independent
– A and E, given B, are independent
– A and E, given G, C, are independent
– A and E, given G only, are not independent

Figure 2: Example DAG network.

• For any set of events, P (x1, x2, . . . , xn) =
n∏

i=1
P (xi|xi+1, . . . , xn)

= P (x1|x2, . . . , xn)P (x2|x3, . . . , xn) . . . P (xn−1|xn)P (xn)
– Given the Bayesian network law, we can simplify these terms significantly by taking out all the

variables except for the direct parents
– e.g. P (G, I, J , E, D) = P (J , I, G, D, E)

= P (J |I, G, D, E)P (I|G, D, E)P (G|D, E)P (D|E)P (E)
= P (J |I)P (I|G, E)P (G)P (D|E)P (E)

– This means that we can always compute P (x1, . . . , xn) just by looking at the conditional probabil-
ities stored in the network

* There are multiple ways to expand this joint probability, but there will always be one order
that works

* The order that works is determined by the topological sorting of the graph
– To compute the joint probability over all the events in the network, compute the product of each

event conditioned on its immediate parents
* Always guaranteed to work due to the existence of a topological sort as above

• Using Bayesian networks, we can compute the probability of 2n events using only n · 2q entries
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