
Lecture 4, Jan 30, 2024
Constraint Satisfaction Problems (CSPs)

Definition

Constraint Satisfaction Problem: A CSP comprises of 3 components:
1. A set of variables X = { x1, x2, . . . , xn }
2. A set of domains for each variable: D : { Dx1 , Dx2 , . . . , Dx3 }
3. A set of constraints C relating the variables

The problem is to find a value for each of the variables in its domain that satisfies all the constraints.

• Example: For the 4-queens problem:
– Variables: { x1, x2, x3, x4 }
– Domain: for each variable: Dxi

= { 1, 2, 3, 4 }
– Constraint: NoAttack(xi, xj) (true if queen xi can attack xj)

* We can express this in a table, giving the value of NoAttack for every combination of xi, xj

• In general CSPs are NP-hard – no polynomial time solution exists
• But we can use heuristics to do better in a lot of the problems that arise in real life

Backtracking Search

• Assign each of the variables some value, and then check if the constraints are satisfied
• If the constraints are not satisfied, revert the last variable that we assigned – this is the process of

backtracking
• If no value of the last variable works, then we go back one more variable and pick another value for

that one, and so on
• This is essentially a brute force search if we pick values for the variables sequentially

– However we can also use heuristics to aid our search

Figure 1: Basic backtracking search algorithm.

• The pseudocode above is a template for the backtracking search algorithm
– Each level of the recursion picks a variable to set, goes through all values of that variable and

checks if any of them work
– We can specify different implementations for PickUnassignedVariable and OrderDomain

• One simple improvement we can make is to only assign variables to values that satisfy all the constraints

1



– Otherwise we would do a lot of meaningless searches when we pick a value that violates a constraint
and keeps assigning others

– e.g. for N -queens, check that the new queen cannot attack any previous queens before placing it

Figure 2: Improved backtracking search algorithm.

• Can we do better and reduce our backtracks even more?
– Every time we assign a variable, it reduces the domain that the other variables can take based on

constraints
– The domain reduction (restrictions) on the other variables can propagate to even more variables
– Every time we do an assignment, we call the inference function, which restricts the domain further

based on the constraints and the new variable value
* This can look at multiple constraints at the same time but often we stick to just 1

Figure 3: Improved backtracking with inference.

2


	Lecture 4, Jan 30, 2024
	Constraint Satisfaction Problems (CSPs)
	Backtracking Search



