Lecture 4, Jan 30, 2024

Constraint Satisfaction Problems (CSPs)

Constraint Satisfaction Problem: A CSP comprises of 3 components:
1. A set of variables X = {x1,22,...,2, }
2. A set of domains for each variable: D: { Dy, ,Dy,,..., Dy, }
3. A set of constraints C relating the variables
The problem is to find a value for each of the variables in its domain that satisfies all the constraints.

e Example: For the 4-queens problem:
— Variables: {x1,x2,x3, 24}
— Domain: for each variable: D,, ={1,2,3,4}
— Constraint: NoAttack(z;,x;) (true if queen z; can attack z;)
* We can express this in a table, giving the value of NoAttack for every combination of x;, x;
e In general CSPs are NP-hard — no polynomial time solution exists
e But we can use heuristics to do better in a lot of the problems that arise in real life

Backtracking Search

e Assign each of the variables some value, and then check if the constraints are satisfied
o If the constraints are not satisfied, revert the last variable that we assigned — this is the process of
backtracking
If no value of the last variable works, then we go back one more variable and pick another value for
that one, and so on
o This is essentially a brute force search if we pick values for the variables sequentially

— However we can also use heuristics to aid our search

Algorithm 1 BacktrackingSearch(prob,assign)

1. if AllVarsAssigned(prob,assign) then

2. if IsConsistent(assign) then

3. return assign

4. else

5. return failure

6. var<—PickUnassignedVar(prob,assign)

7. for valuec OrderDomainValue(var,prob,assign) do

8. assign<— assign U (var = value)

9. result < BacktrackingSearch(prob,assign)
10. if result '= failure then return result
11. assign < assign \ (var=value)

12. return failure

Figure 1: Basic backtracking search algorithm.

e The pseudocode above is a template for the backtracking search algorithm
— Each level of the recursion picks a variable to set, goes through all values of that variable and
checks if any of them work
— We can specify different implementations for PickUnassigned Variable and OrderDomain
¢ One simple improvement we can make is to only assign variables to values that satisfy all the constraints



— Otherwise we would do a lot of meaningless searches when we pick a value that violates a constraint
and keeps assigning others
— e.g. for N-queens, check that the new queen cannot attack any previous queens before placing it

Algorithm 2 BacktrackingSearch(prob,assign)

1. if AllvarsAssigned(prob,assign) then

2. var<—PickUnassignedVar(prob,assign)

3. for valuec OrderDomainValue(var,prob,assign) do

4. if vallsConsistentWithAssignment(value,assign) then
assign<— assign U (var = value)
result <— BacktrackingSearch(prob,assign)

5

6

7. if result != failure then return result
8 assign «— assign \ (var=value)

9

. return failure

Figure 2: Improved backtracking search algorithm.

Can we do better and reduce our backtracks even more?
— Every time we assign a variable, it reduces the domain that the other variables can take based on
constraints
— The domain reduction (restrictions) on the other variables can propagate to even more variables
— Every time we do an assignment, we call the inference function, which restricts the domain further
based on the constraints and the new variable value
* This can look at multiple constraints at the same time but often we stick to just 1

Algorithm 3 BacktrackingSearch_with_Inference(prob,assign)

1.if AllVarsAssigned(prob,assign) then

2. var<—PickUnassignedVar(prob,assign)

3. for valuec OrderDomainValue(var,prob,assign) do

4. if VallsConsistentWithAssignment(value,assign) then
5 assign<— assign U (var = value)

6 inference<— Infer(var,prob,assign)

7 if inference != failure then

8. assign<— assign U inference

9 result < BacktrackingSearch(prob,assign)
0 if result != failure then return result

11. assign <— assign \ {(var=value) U inference

12. return Failure

Figure 3: Improved backtracking with inference.



	Lecture 4, Jan 30, 2024
	Constraint Satisfaction Problems (CSPs)
	Backtracking Search



